Skip to main content
Log in

Theoretical Study of a Hybrid Organic–Inorganic Heteropolyoxometalate Compound

  • STRUCTURE OF ORGANIC COMPOUNDS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Large study of theoretical calculations for the hybrid organic-inorganic heteropolyoxometalate (C6H8N)5[HAs2Mo6O26(H2O)]⋅3H2O (1) is reported. The results of theoretical studies, allowed analyzing electronic structure, polarity, electrophilic and nucleophilic reactivity of 1, as well as its flexibility and investigations of thermodynamic properties of 1 were performed. The molecular modelling shows a good reactivity for the compound. The system is an insulator and the high value of its dipole might indicate high polarity of compound. The thermodynamic properties showed a large difference between the variation of enthalpy, entropy and heat capacity energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. Dolbecq, E. Dumas, C. R. Mayer, and P. Mialane, Chem. Rev. 110, 6009 (2010).

    Article  Google Scholar 

  2. A. Bijelic and A. Rompel, Coord. Chem. Rev. (2015)

  3. P. Gouzerh and M. Che, Actual Chim. 298, 9 (2006).

    Google Scholar 

  4. M. T. Pope, Heteropoly and Isopoly Oxometalates (Springer, Berlin, 1983).

    Book  Google Scholar 

  5. M. T. Pope and A. Müller, Polyoxometalates. From Platonic Solids to Anti-Retroviral Activity (Kluwer, Dordrecht, 1994).

    Book  Google Scholar 

  6. M. T. Pope and A. Müller, Polyoxometalate Chemistry. From Topology via Self-Assembly to Applications (Kluwer, Dordrecht, 2001)

    Google Scholar 

  7. J. J. Borrás-Almenar, E. Coronado, A. Müller, and M. Pope, Polyoxometalate Molecular Science (Kluwer, Dordrecht, 2003).

    Book  Google Scholar 

  8. S. F. Jia, X. L. Hao, Y. Y. Ma, et al., J. Coord. Chem. 70, 1156 (2017).

    Article  Google Scholar 

  9. A. Müller, E. Krickerneyer, M. Penk, et al., Angew. Chem. Int. Ed. Engl. 29, 88 (1990).

    Article  Google Scholar 

  10. C. Sun, Y. Li, E. Wang, et al., Inorg. Chem. 46, 1563 (2007).

    Article  Google Scholar 

  11. B. Hedman, Acta Crystallogr. B 36, 2241 (1980).

    Article  Google Scholar 

  12. M. Y. Lee and S. L. Wang, Chem. Mater. 11, 3588 (1999).

    Article  Google Scholar 

  13. Z. Li, R. Cui, B. Liu, et al., J. Mol. Struct. 920, 436 (2009).

    Article  ADS  Google Scholar 

  14. J. Zhuang, L. Yan, C. Liu, and Z. Su, J. Inorg. Chem. 2529 (2009).

  15. X. Lopez, C. de Graaf, J. M. Maestre, et al., J. Chem. Theor. Comput. 1, 856 (2005).

    Article  Google Scholar 

  16. H. Liu, N. A. G. Bandeira, V. Félix, and M. J. Calhorda, Eur. J. Inorg. Chem. 1713 (2013).

  17. J. Gracia, J. M. Poblet, J. A. Fernández, et al., Eur. J. Inorg. Chem. 1149 (2006).

  18. C. G. Liu, W. Guan, L. K.Yan, and Z. M. Su, Eur. J. Inorg. Chem. 489 (2011).

  19. W. Guan, G. C. Yang, L. K. Yan, and Z. M. Su, Eur. J. Inorg. Chem. 4179 (2006).

  20. M. M. Rohmer and M. Bénard, J. Clust. Sci. 13, 333 (2002).

    Google Scholar 

  21. C. Sha, Y. Li Kai, S. Ping, et al., Chin. Sci. Bull. 57, 976 (2012).

    Google Scholar 

  22. S. Ping, Y. Li Kai, G. Wei, et al., Chin. Sci. Bull. 54, 203 (2009).

    Google Scholar 

  23. L. Chun Guang, G. Xiao Hui, and S. Zhong Min, Chin. Sci. Bull. 55, 1910 (2012).

    Article  Google Scholar 

  24. F. Liang, G. Wei, Y. Li Kai, et al., Chin. Sci. Bull. 51, 1174 (2008).

    Article  Google Scholar 

  25. Y. Zheng, J. Liu, X. Yang, and J. Wang, J. Mol. Model. 20, 2495 (2014).

    Article  Google Scholar 

  26. S. Cong, L. K. Yan, S. Z. Wen, et al., Theor. Chem. Acc. 130, 1043 (2011).

    Article  Google Scholar 

  27. C. de Graaf, R. Caballol, S. Romo, and J. M. Poblet, Theor. Chem. Acc. 123, 3 (2009).

    Article  Google Scholar 

  28. Y. L. Si, C. G. Liu, E. B. Wang, and Z. M. Su, Theor. Chem. Acc. 122, 217 (2009).

    Article  Google Scholar 

  29. W. Guan, C. G. Liu, P. Song, G. C. Yang, and Z. M. Su, Theor. Chem. Acc. 122, 265 (2009).

    Article  Google Scholar 

  30. S. M. Yue, L. K. Yan, Z. M. Su, et al., J. Coord. Chem. 57, 123 (2004).

    Article  Google Scholar 

  31. F. Li, X. Hu, R. Sa, and L. Niu, Struct. Chem. 25, 539 (2014).

    Article  Google Scholar 

  32. J. Li, J. Clust. Sci. 13, 137 (2002).

    Google Scholar 

  33. A. Harchani, D. Trzybiński, S. Pawlędzio, et al., Acta Crystallogr. C 74, 1088 (2018).

    Article  Google Scholar 

  34. Wavefunction Inc., Spartan 14 (Wavefunction Inc., Irvine, CA 92612, USA, 2014).

  35. Hypercube Inc., Hyperchem 8.0.6 (Hypercube Inc, USA, 2008).

    Google Scholar 

  36. H. Naruke, N. Kajitani, and T. Konya, J. Solid State Chem. 184, 770 (2011).

  37. C. Dey, T. Kundu, H. B. Aiyappa, and R Banerjee, RSC Adv. 5, 2333 (2015).

Download references

ACKNOWLEDGMENTS

This work was supported by the Ministry of Higher Education and Scientific Research of Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Harchani.

Ethics declarations

The authors declare that they have no conflict of interests.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harchani, A., Haddad, A. Theoretical Study of a Hybrid Organic–Inorganic Heteropolyoxometalate Compound. Crystallogr. Rep. 66, 949–953 (2021). https://doi.org/10.1134/S1063774521060134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774521060134

Navigation