Skip to main content
Log in

One-Step Hydrothermal Deposition of ZnO–TiO2 Heterojunction Nanostructures as Photoelectrochemical Performance for Sb2S3 Quantum-Dot-Sensitized Solar Cells by High-Efficiency Enhancement

  • NANOMATERIALS AND CERAMICS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

ZnO–TiO2 heterojunction photoanodes consisting of nanoparticles, nanorods, nanopropellers, and nanohedgehogs for dye-sensitized solar cell were first synthesized by one-step hydrothermal method technique on an indium tin oxide substrate at different temperatures (100–180°C) in a solution containing ZnCl2, TiCl4, ethanol and HCl. Furthermore, Sb2S3 quantum dots were grown on nanostructured ZnO–TiO2 surfaces by successive ionic layer adsorption and reaction. The photoelectrochemical performance data show that the dye-sensitized solar cells deposited on a quantum dot ZnO–TiO2 have a power conversion efficiency of 1.82% for nanoparticles, 3.00% for nanorods, 7.05% for nanopropellers, and 9.22% for nanohedgehogs. Because of its high power conversion efficiency, nanohedgehogs can be taken into account as a significant step in the development of solar cell performance for quantum-dot-sensitized solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. H. Yu, S. Zhang, H. Zhao, et al., J. Phys. Chem. C 113, 16277 (2009).

    Article  Google Scholar 

  2. S. F. Wang, K. K. Rao, T. C. K. Yang, and H. P. Wang, J. Alloys Compd. 509, 1969 (2011).

    Article  Google Scholar 

  3. K. Zhao, Z. Pan, and X. Zhong, J. Phys. Chem. Lett. 7, 406 (2016).

    Article  Google Scholar 

  4. S. Yochelis and G. Hodes, Chem. Mater. 16, 2740 (2004).

    Article  Google Scholar 

  5. D. R. Baker and P. V. Kamat, Adv. Funct. Mater. 19, 805 (2009).

    Article  Google Scholar 

  6. N. Guijarro, T. Lana-Villarreal, I. Mora-Seró, J. Bisquert, and R. Gómez, J. Phys. Chem. C 113, 4208 (2009).

    Article  Google Scholar 

  7. I. Robel, V. Subramanian, M. Kuno, and P. V. Kamat, J. Am. Chem. Soc. 128, 2385 (2006).

    Article  Google Scholar 

  8. D. Ham, K. K. Mishra, and K. Rajeshwar, J. Electrochem. Soc. 138, 100 (1991).

    Article  ADS  Google Scholar 

  9. A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, and P. V. Kamat, J. Am. Chem. Soc. 130, 4007 (2008).

    Article  Google Scholar 

  10. H. Lee, H. C. Leventis, S. J. Moon, et al., Adv. Funct. Mater. 19, 2735 (2009).

    Article  Google Scholar 

  11. A. Braga, S. Giménez, I. Concina, A. Vomiero, and I. Mora-Seró, J. Phys. Chem. Lett. 2, 454 (2011).

    Article  Google Scholar 

  12. Z. Du, H. Zhang, H. Bao, and X. Zhong, J. Mater. Chem. A 2, 13033 (2014).

    Article  Google Scholar 

  13. C. C. Sno, S. Cells, A. Hossain, J. R. Jennings, Z. Y. Koh, and Q. Wang, ACS Nano 5, 3172 (2011).

    Article  Google Scholar 

  14. K. Zhao, H. Yu, H. Zhang, and X. Zhong, J. Phys. Chem. C 118, 5683 (2014).

    Article  Google Scholar 

  15. Y. Jiang, B. Bin Yu, J. Liu, et al., Nano Lett. 15, 3088 (2015).

    Article  ADS  Google Scholar 

  16. I. D. Kim, J. M. Hong, B. H. Lee, et al., Appl. Phys. Lett. 91, 113505 (2007).

    Article  ADS  Google Scholar 

  17. R. T. Ako, D. S. U. Peiris, P. Ekanayake, et al., Sol. Energy Mater. Sol. Cells 157, 18 (2016).

    Article  Google Scholar 

  18. I. Şişman, M. Can, B. Ergezen, and M. Biçer, RSC Adv. 5, 73692 (2015).

  19. J. Qiu, M. Guo, and X. Wang, ACS Appl. Mater. Interfaces 3, 2358 (2011).

    Article  Google Scholar 

  20. S. Li, X. Zhang, X. Jiao, and H. Lin, Mater. Lett. 65, 2975 (2011).

    Article  Google Scholar 

  21. X. Lan, Y. Jiang, X. Liu, et al., Cryst. Growth Des. 11, 3837 (2011).

    Article  Google Scholar 

  22. Z. A. Garmaroudi, M. Abdi-Jalebi, M. R. Mohammadi, and R. H. Friend, RSC Adv. 6, 70895 (2016).

  23. S. H. Ko, D. Lee, H. W. Kang, et al., Nano Lett. 11, 666 (2011).

    Article  ADS  Google Scholar 

  24. S. Ito, T. N. Murakami, P. Comte, et al., Thin Solid Films 516, 4613 (2008).

    Article  ADS  Google Scholar 

  25. T. Rattanavoravipa, T. Sagawa, and S. Yoshikawa, Sol. Energy Mater. Sol. Cells 92, 1445 (2008).

    Article  Google Scholar 

  26. J. George and M. K. Radhakrishnan, Solid State Commun. 33, 987 (1980).

    Article  ADS  Google Scholar 

  27. O. Savadogo and K. C. Mandal, Appl. Phys. Lett. 63, 228 (1993).

    Article  ADS  Google Scholar 

  28. S. H. Im, C. S. Lim, J. A. Chang, et al., Nano Lett. 11, 4789 (2011).

    Article  ADS  Google Scholar 

  29. S. Ito, K. Tsujimoto, D. C. Nguyen, et al., Int. J. Hydrogen Energy 38, 16749 (2013).

    Article  Google Scholar 

  30. J. Chao, S. Xing, J. Zhang, et al., Mater. Res. Bull. 57, 300 (2014).

    Article  Google Scholar 

  31. V. Sharma, T. K. Das, P. Ilaiyaraja, and C. Sudakar, Sol. Energy 191, 400 (2019).

    Article  ADS  Google Scholar 

  32. R. Parize, A. Katerski, I. Gromyko, et al., J. Phys. Chem. C 121, 9672 (2017).

    Article  Google Scholar 

  33. R. Parize, T. Cossuet, E. Appert, et al., CrystEngComm 20, 4455 (2018).

    Article  Google Scholar 

  34. G. Yue, F. Tan, F. Li, et al., Acta 149, 117 (2014).

    Google Scholar 

  35. F. Gao, Q. Chen, X. Zhang, et al., Curr. Appl. Phys. 18, 546 (2018).

    Article  ADS  Google Scholar 

  36. D. Wang, W. Wang, X. Ma, et al., Ind. Eng. Chem. Res. 54, 12639 (2015).

    Article  Google Scholar 

  37. S. Li, Z. Chen, T. Li, et al., Electrochim. Acta 127, 362 (2014).

    Article  Google Scholar 

  38. C. Zhou, H. Wang, T. Huang, et al., J. Electron. Mater. 48, 7320 (2019).

    Article  ADS  Google Scholar 

  39. K. Jeong, P. R. Deshmukh, J. Park, et al., ACS Sustain. Chem. Eng. 6, 6518 (2018).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

I gratefully thank my parents who have supported me so far.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Biçer.

Ethics declarations

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biçer, M. One-Step Hydrothermal Deposition of ZnO–TiO2 Heterojunction Nanostructures as Photoelectrochemical Performance for Sb2S3 Quantum-Dot-Sensitized Solar Cells by High-Efficiency Enhancement. Crystallogr. Rep. 66, 1117–1124 (2021). https://doi.org/10.1134/S1063774521060067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774521060067

Navigation