Skip to main content
Log in

Ordering of tysonite structure in an as-grown Er0.715Ca0.285F2.715 crystal and in a component of annealed two-phase crystal of the Er0.67Ca0.33F2.67 composition

  • Structure of Inorganic Compounds
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The structures of the as-grown tysonite phase (TP) Er0.715Ca0.285F2.715 as grown and the tysonite component in a crystal of the Er0.67Ca0.33F2.67 composition annealed at 760°C have been determined by X-ray diffraction methods from the main reflections in the sp. gr. P63/mmc, Z = 2. Ca2+ cations in the Er0.715Ca0.285F2.715 structure occupy the 2c site on the 63 axis, thus confirming the conclusion about the symmetrizing effect of alkaline earth cation, which was made previously for the Y0.715Ca0.285F2.715 compound. Er3+ cations are disordered over 6h sites around this axis. The Er0.67Ca0.33F2.67 composition contains Er0.67+δCa0.33−δF2.67+δ TP and inclusions of distorted fluorite phase rhβ-Ca8Er5F31. The tysonite and two fluorite lattices have no “correct” relationship. Ca2+ cations and a half of TP Er3+ cations are fixed in the 2c sites, while the other Er3+ cations are disordered over the 6h sites. Superstructural ordering occurs in Er0.715Ca0.285F2.715 crystals; however, the process is not completed, as follows from the character of the diffraction pattern. Weak satellite reflections in the diffraction pattern of the Er0.67Ca0.33F2.67 composition are indicative of the development of TP ordering processes but remain unfit for structural calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Frant and J. W. Ross, Science 154, 1553 (1966).

    Article  ADS  Google Scholar 

  2. B. P. Sobolev, E. A. Krivandina, I. V. Murin, et al., USSR Inventor’s Certificate (1988).

  3. I. V. Murin, O. V. Glumov, and D. V. Samusik, Zh. Prikl. Khim. 64(10), 2171 (1991).

    Google Scholar 

  4. E. F. Sudakova, E. Ya. Alksnis, R. S. Perlovskii, et al., Symp. Solid State Ionics, Boston, 1992, p. 160.

  5. N. I. Sorokin, E. F. Sudakova, E. A. Krivandina, and B. P. Sobolev, Elektrokhimiya 35(2), 239 (1999).

    Google Scholar 

  6. N. I. Sorokin, E. A. Krivandina, Z. I. Zhmurova, et al., Proc. All-Russia Conf. “Sensor-2000”, St. Petersburg, 2000), p. 322.

  7. A. A. Potanin, Zh. Vseross. Khim. O-va im. D. I. Mendeleeva 45(5–6), 58 (2001).

    Google Scholar 

  8. A. A. Potanin and N. I. Vedeneev, RF Patent No. RU2187178 (1999).

  9. A. A. Potanin, RF Patent No. RU2295178 (2005).

  10. M. Anji Reddy and M. Fichtner, J. Mater. Chem. 21, 17059 (2011).

    Article  Google Scholar 

  11. C. Rongeat, M. Anji Reddy, R. Witter, et al., J. Phys. Chem. C 117(10), 4943 (2013).

    Article  Google Scholar 

  12. L. P. Otroshchenko, B. P. Aleksandrov, B. A. Maksimov, et al., Kristallografiya 30(4), 658 (1985).

    Google Scholar 

  13. S. F. Radaev, E. A. Krivandina, L. A. Muradyan, et al., Kristallografiya 36(2), 369 (1991).

    Google Scholar 

  14. A. P. Dudka, A. A. Loshmanov, and B. P. Sobolev, Kristallografiya 43(4), 605 (1998).

    ADS  Google Scholar 

  15. N. B. Bolotina, A. I. Kalyukanov, T. S. Chernaya, et al., Crystallogr. Rep. 58(4), 575 (2013).

    Article  ADS  Google Scholar 

  16. N. I. Sorokin and B. P. Sobolev, Crystallogr. Rep. 52(5), 842 (2007).

    Article  ADS  Google Scholar 

  17. B. P. Sobolev, E. G. Ippolitov, B. M. Zhigarnovskii, and L. S. Garashina, Izv. Akad. Nauk SSSR, Neorg. Mater. 1(3), 362 (1965).

    Google Scholar 

  18. L. S. Garashina and B. P. Sobolev, Kristallografiya 16(2), 307 (1971).

    Google Scholar 

  19. B. P. Sobolev and P. P. Fedorov, J. Less-Common Met. 60(1), 33 (1978).

    Article  Google Scholar 

  20. O. Greis and J. M. Haschke, Handbook on the Physics and Chemistry of Rare Earths, Ed. by K. A. Gscheidner and L. R. Eyring, (North-Holland, Amsterdam, 1982), Vol. 5, Ch. 45, p. 387.

  21. D. P. Devor and M. Robinson, Phys. Rev. Lett. 23(13), 704 (1969).

    Article  ADS  Google Scholar 

  22. V. Petricek, M. Dusek, and L. Palatinus, JANA2006. Structure Determination Software Program (Institute of Physics, Prague, 2006).

    Google Scholar 

  23. O. E. Izotova, V. B. Aleksandrov, B. P. Sobolev, and L. S. Garashina, Proc. II All-Union Symp. on Chemistry of Inorganic Fluorides, Moscow, 1970), p. 116.

  24. N. L. Tkachenko, L. S. Garashina, O. E. Izotova, et al., J. Solid State Chem. 8(3), 213 (1973).

    Article  ADS  Google Scholar 

  25. B. P. Sobolev, A. M. Golubev, and P. Errero, Crystallogr. Rep. 48(1), 141 (2003).

    Article  ADS  Google Scholar 

  26. D. J. M. Bevan and O. Greis, Rev. Chim. Miner. 15(4), 346 (1978).

    Google Scholar 

  27. R. D. Shannon, Acta Crystallogr. A 32(5), 751 (1976).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Bolotina.

Additional information

Original Russian Text © N.B. Bolotina, A.I. Kalyukanov, T.S. Chernaya, I.A. Verin, N.I. Sorokin, I.I. Buchinskaya, B.P. Sobolev, 2014, published in Kristallografiya, 2014, Vol. 59, No. 4, pp. 569–577.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolotina, N.B., Kalyukanov, A.I., Chernaya, T.S. et al. Ordering of tysonite structure in an as-grown Er0.715Ca0.285F2.715 crystal and in a component of annealed two-phase crystal of the Er0.67Ca0.33F2.67 composition. Crystallogr. Rep. 59, 504–512 (2014). https://doi.org/10.1134/S1063774514030055

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774514030055

Keywords

Navigation