Skip to main content
Log in

Methods for studying the coherent 4D structural dynamics of free molecules and condensed state of matter

  • Reviews
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Studies in the coupled 4D spatial and temporal continuum are necessary for understanding the dynamic features of molecular systems with a complex profile of the potential energy surface. The introduction of time sweep into diffraction methods and the development of principles for studying coherent processes have revealed new approaches to the analysis of the dynamics of wave packets, the intermediate products and the transition state of the reaction center, and short-lived compounds in gaseous and condensed media. The use of picosecond and femtosecond electron probe pulses, synchronized with excitation laser pulses, determined the development of ultrafast electron crystallography, time-resolved X-ray diffraction, and dynamic transmission electron microscopy (DTEM). One of the most promising applications of the developed diffraction methods is the characterization and visualization of the processes occurring upon the photoexcitation of free molecules and biological objects and the analysis of surface and thin films. The whole set of spectral and diffraction methods based on different physical principles, which are complementary and make it possible to perform the photoexcitation of nuclei and electrons and carry out diagnostics of their dynamics at ultrashort time sequences, reveal new possibilities for studies with the necessary integration of the “structure-dynamics-function” triad in chemistry, biology, and materials science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Ischenko, V. V. Golubkov, V. P. Spiridonov, et al., Appl. Phys. B 32, 161 (1983).

    Article  ADS  Google Scholar 

  2. A. P. Rood and J. Milledge, J. Chem. Soc. Faraday Trans. 2, 1145 (1984).

    Google Scholar 

  3. J. D. Ewbank, L. Schafer, and A. A. Ischenko, J. Mol. Struct. Feature Article. 534, 1 (2000).

    Google Scholar 

  4. J. C. Williamson, M. Dantus, S. B. Kim, and A. H. Zewail, Chem. Phys. Lett. 196, 529 (1992).

    Article  ADS  Google Scholar 

  5. P. M. Weber, S. D. Carpenter, and T. Lucza, Proc. SPIE 2521, 23 (1995).

    Article  ADS  Google Scholar 

  6. R. Srinivasan, V. A. Lobastov, C.-Yu. Ruan, and A. H. Zewail, Helv. Chim. Acta 86, 1763 (2003).

    Article  Google Scholar 

  7. S. Williamson, G. Mourou, and L. C. M. Li, Phys. Rev. Lett. 52, 2364 (1984).

    Article  ADS  Google Scholar 

  8. S. A. Akhmanov, V. N. Bagratashvili, V. V. Golubkov, et al., Sov. Tech. Phys. Lett. 11(3), 105 (1985).

    Google Scholar 

  9. M. Dantus, S. B. Kim, J. C. Williamson, and A. H. Zewail, J. Phys. Chem. 98, 2782 (1994).

    Article  Google Scholar 

  10. M. Ya. Schelev, N. S. Vorobiev, V. A. Monastyrsky, and A. M. Prokhorov, Appl. Phys. Lett. 79, 803 (1998).

    Google Scholar 

  11. Time-Resolved Electron and X-ray Diffraction. Proc. SPIE, Vol. 2521, Ed. by P. M. Rentzepis (WA, Bellingham, 1995).

  12. M. Ben-Nun, J. Cao, and K. Wilson, J. Phys. Chem. A 101, 8744 (1997).

    Google Scholar 

  13. W. E. King, G. H. Campbell, A. Frank, et al., J. Appl. Phys. 97, 111 101 (2005).

    Google Scholar 

  14. A. H. Zewail, Annu. Rev. Phys. Chem. 57, 65 (2006).

    Article  ADS  Google Scholar 

  15. J. B. Hastings, Appl. Phys. Lett. 89, 184 109 (2006).

    Article  Google Scholar 

  16. A. L. Buchachenko, Usp. Khim. 68, 99 (1999).

    Google Scholar 

  17. P. Baum, J. Manz, and A. Schild, Sci. China. G 53, 987 (2010).

    Article  Google Scholar 

  18. K. Bergmann, H. Theuer, and B. W. Shore, Rev. Mod. Phys. 70, 1003 (1998).

    Article  ADS  Google Scholar 

  19. K. Bergmann and B. W. Shore, Molecular Dynamics and Spectroscopy by Stimulated Emission Pumping (World Scientific, Singapore, 1995).

    Google Scholar 

  20. W. S. Warren, H. Rabitz, and M. Dahleh, Science 259, 1581 (1993).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. M. Demiralp and H. Rabitz, Phys. Rev. A 47, 809 (1993).

    Article  ADS  Google Scholar 

  22. C. J. Bardeen, Q. Wang, and C. V. Shank, Phys. Rev. Lett. 75, 3410 (1995).

    Article  ADS  Google Scholar 

  23. R. Kosloff, S. A. Rice, P. Gaspard, et al., Chem. Phys. 139, 201 (1989).

    Article  Google Scholar 

  24. E. C. Kemble, The Fundamental Principles of Quantum Mechanics (McGraw-Hill, New York, 1937), p. 71.

    Google Scholar 

  25. L. E. Ballentine, Quantum Mechanics (Prentice Hall, Englewood Cliffs, NJ, 1990), p. 53.

    Google Scholar 

  26. E. P. Wigner, Perspectives in Quantum Theory, Ed. by W. Yorgrau and A. van der Merve (Dover, New York, 1979), p. 25.

    Google Scholar 

  27. M. Hillery, R. F. O’Connell, M. O. Scully, and E. P. Wigner, Phys. Rep. 106, 121 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  28. K. E. Cahill and R. J. Glauber, Phys. Rev. 177, 1882 (1969).

    Article  ADS  Google Scholar 

  29. E. Freenberg, PhD Thesis (Harvard Univ., 1933).

  30. S. Weigert, Phys. Rev. A 53, 2078 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  31. A. A. Ischenko, L. Schafer, and J. Ewbank, Time-Resolved Electron Diffraction, Ed. by J. R. Helliwell and P. M. Rentzepis (Oxford Univ. Press, Oxford, 1997), Ch. 13.

    Google Scholar 

  32. A. A. Ischenko, L. Schäfer, J. Y. Luo, and J. D. Ewbank, J. Phys. Chem. 98, 8673 (1994).

    Article  Google Scholar 

  33. J. C. Williamson, J. Cao, H. Ihee, et al., Nature 6, 159 (1997).

    Article  ADS  Google Scholar 

  34. H. Ihee, J. Cao, and A. H. Zewail, Chem. Phys. Lett. 281, 10 (1997).

    Article  ADS  Google Scholar 

  35. D. J. Tannor and S. A. Rice, J. Chem. Phys. 83, 5013 (1985).

    Article  ADS  Google Scholar 

  36. J. K. Krause, R. M. Whitnell, K. R. Wilson, and Y. J. Yan, Femtosecond Chemistry, Ed. by J. Manz and L. Woste (Springer, Weinheim, 1995), p. 743.

    Google Scholar 

  37. Y. J. Yan and K. R. Wilson, J. Chem. Phys. 100, 1094 (1994).

    Article  ADS  Google Scholar 

  38. J. L. Krause, K. J. Schäfer M. Ben-Nun, and K. R. Wilson, Phys. Rev. Lett. 79, 4978 (1997).

    Article  ADS  Google Scholar 

  39. A. A. Ischenko, J. D. Ewbank, and L. Schäfer, J. Mol. Struct. 320, 147 (1994).

    Article  ADS  Google Scholar 

  40. J. D. Ewbank, L. Schäfer, and A. A. Ischenko, J. Mol. Struct. 321, 265 (1994).

    Article  ADS  Google Scholar 

  41. J. C. Williamson and A. H. Zewail, J. Phys. Chem. 98, 2766 (1994).

    Article  Google Scholar 

  42. A. A. Ischenko, V. P. Spiridonov, L. Schäfer, and J. D. Ewbank, J. Mol. Struct. 300, 115 (1993).

    Article  ADS  Google Scholar 

  43. R. A. Bonham and M. Fink, High Energy Electron Scattering (Van Nostrand Reinhold, New York, 1974).

    Google Scholar 

  44. Stereochemical Applications of Gas-Phase Electron Diffraction, Ed. by I. Hargittai and M. Hargittai (VCH, New York, 1988), Part A.

    Google Scholar 

  45. A. A. Ischenko, L. Schafer, and J. D. Ewbank, J. Phys. Chem. 102, 7329 (1998).

    Article  Google Scholar 

  46. U. Leonhardt, Measuring the Quantum State of Light (New York, Cambridge Univ. Press 1997), Ch. 5.

    Google Scholar 

  47. A. A. Ishchenko, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Technol. 52(9), 62 (2009).

    Google Scholar 

  48. F. Natterer, The Mathematics of Computerized Tomography (Wiley, New York, 1986), Change. 2, 5.

    MATH  Google Scholar 

  49. M. Munroe, D. Boggavarapu, M. E. Anderson, and M. G. Raymer, Phys. Rev. 52, R924 (1995).

    Article  ADS  Google Scholar 

  50. S. R. de Groot and L. G. Suttorp, Foundations of Electrodynamics (Noord-Hollandsche U.M., Amsterdam, 1972), Ch. VI.

    Google Scholar 

  51. K. E. Cahill and R. J. Glauber, Phys. Rev. 177, 1882 (1969).

    Article  ADS  Google Scholar 

  52. Th. Richter and A. Wünsche, Phys. Rev. A 53, R1974 (1996).

  53. Th. Richter, Phys. Lett. A 211, 327 (1996).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. Th. Richter and A. Wünsche, Acta Phys. Slovaca 46, 487 (1996).

    Google Scholar 

  55. A. Wünsche, J. Mod. Opt. 44, 2293 (1997).

    Article  ADS  MATH  Google Scholar 

  56. U. Leonhardt, Acta Phys. Slovaca 46, 309 (1996).

    Google Scholar 

  57. U. Leonhardt and M. G. Raymer, Phys. Rev. Lett. 76, 1985 (1996).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. U. Leonhardt and S. Schneider, Phys. Rev. A 56, 2549 (1997).

    Article  ADS  Google Scholar 

  59. U. Leonhardt, M. Munroe, T. Kiss, et al., Opt. Commun. 127, 144 (1996).

    Article  ADS  Google Scholar 

  60. U. Leonhardt, J. Mod Opt. 44, 2271 (1997).

    MathSciNet  ADS  MATH  Google Scholar 

  61. A. Messiah, Quantum Mechanics (North-Holland, Amsterdam, 1965), Vol. 1, p. 98.

    Google Scholar 

  62. A. A. Ischenko, I. Schafer, and J. D. Ewbank, Proc. SPIE 3516, 580 (1998).

    Article  ADS  Google Scholar 

  63. T. R. Todd and W. B. Olson, J. Mol. Spectrosc. 74, 190 (1979).

    Article  ADS  Google Scholar 

  64. W.-B. Tzeng, H.-M. Yin, W.-Y. Leung, et al., J. Chem. Phys. 88, 1658 (1988).

    Article  ADS  Google Scholar 

  65. A. A. Ischenko, J. D. Ewbank, and L. Schäfer, J. Phys. Chem. 99, 15790 (1995).

    Article  Google Scholar 

  66. V. A. Lobastov, J. D. Ewbank, L. Schafer, and A. A. Ischenko, Rev. Sci. Instrum. 69, 2633 (1998).

    Article  ADS  Google Scholar 

  67. C. T. Hebeisen, R. Emstorfer, M. Harb, et al., Springer Series in Chemical Physics, Ed. by P. Corkum, D. M. Jonas, R. J. Dwayne, Miller, and A. M. Weiner; Ultrafast Phenomena XV. Proc 15th Int. Conf., Pacific Grove, USA, July 30–August 4, 2006; 10.1007/978-3-540-68781-8-242.

  68. A. Gahlmann, S. T. Park, and A. H. Zewail, Phys. Chem. Chem. Phys. 10, 2894 (2008).

    Article  Google Scholar 

  69. Y. Glinec, J. Faure, A. Pukhov, et al., Laser Particle Beams 23, 161 (2005).

    Article  Google Scholar 

  70. P. Hommelhoff, C. Kealhofer, and M. A. Kasevich, Phys. Rev. Lett. 97, 247 402 (2006).

    Article  Google Scholar 

  71. J. Tellinghuisen, J. Chem. Phys. 82, 4012 (1985).

    Article  ADS  Google Scholar 

  72. A. A. Ishchenko, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Technol. 52(8), 58 (2009).

    Google Scholar 

  73. A. A. Ishchenko, V. L. Popov, and Yu. I. Tarasov, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Technol. 51(11), 56 (2008).

    Google Scholar 

  74. H. Ihee, V. A. Lobastov, U. M. Gomez, et al., Science 291, 458 (2001).

    Article  ADS  Google Scholar 

  75. J. S. Baskin and A. H. Zewail, Chem. Phys. Chem. 6, 2261 (2005).

    Google Scholar 

  76. J. R. Dwyer, C. T. Hebeisen, R. Ernstorfer, et al., Phil. Trans. R. Soc. A 364, 741 (2006).

    Article  ADS  Google Scholar 

  77. R. C. Dudek and P. M. Weber, J. Phys. Chem. A 105, 4167 (2001).

    Article  Google Scholar 

  78. H. Ihee, J. Kua, W. A. Goddard, and A. H. Zewail, J. Phys. Chem. A 105, 3623 (2001).

    Article  Google Scholar 

  79. H. Ihee, B. M. Goodson, R. Srinivasan, et al., J. Phys. Chem. A 106, 4087 (2002).

    Article  Google Scholar 

  80. H. Ihee, J. Kua, W. A. Goddard, and A. H. Zewail, J. Phys. Chem. A 105, 3623 (2001).

    Article  Google Scholar 

  81. A. H. Zewail and J. M. Thomas, 4D Electron Microscopy. Imaging in Space and Time (Imperial College, 2010).

  82. S. J. L. Billinge and L. Levine, Science 316, 560 (2007).

    Article  ADS  Google Scholar 

  83. V. A. Lobastov, R. Srinivasan, F. Vigliotti, et al. UltraFast Optics IV, Springer Series in Optical Sciences,, Ed. by F. Krausz, G. Korn, P. Corkum, and I. Walmsley (Springer, Berlin, 2003), p. 413.

    Google Scholar 

  84. C.-Y. Ruan, F. Vigliotti, V. A. Lobastov, et al., Proc. Natl. Acad. Sci. USA 101, 1123 (2004).

    Article  ADS  Google Scholar 

  85. F. Vigliotti, S. Chen, C.-Y. Ruan, et al., Angew. Chem. Int. Ed. 43, 2705 (2004).

    Article  Google Scholar 

  86. S. K. Sundaram and E. Mazur, Nature Mater. 1, 217 (2002).

    Article  ADS  Google Scholar 

  87. S. Chen, M. T. Seidel, and A. H. Zewail, Proc. Natl. Acad. Sci. USA 102, 8854 (2005).

    Article  ADS  Google Scholar 

  88. C.-Y. Ruan, D.-S. Yang, and A. H. Zewail, J. Am. Chem. Soc. 126, 12797 (2004).

    Article  Google Scholar 

  89. A. I. Kitaigoradskii, Molecular Crystals (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  90. D. Zanchet, H. Tolentino, M. C. Martins Alves, et al., Chem. Phys. Lett. 157, 167 (2000).

    Article  Google Scholar 

  91. C.-Y. Ruan, Y. Murooka, R. K. Raman, et al., Microsc. Microanal. 15, 323 (2009).

    Article  ADS  Google Scholar 

  92. J. Cao, Z. Hao, H. Park, et al., Appl. Phys. Lett. 83, 1044 (2003).

    Article  ADS  Google Scholar 

  93. B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, Science 302, 1382 (2003).

    Article  ADS  Google Scholar 

  94. S. G. Anderson, P. Musumeci, J. B. Rosenzweig, et al., Phys. Rev. Spec. Top-Accel. Beams 8, 014 401 (2005).

    Google Scholar 

  95. T. van Odheusden, E. F. de Jong, S. B. van der Geer, et al., J. Appl. Phys. 102, 0943501 (2007).

    Google Scholar 

  96. P. Hommelhoff, Y. Sortais, A.-T. Aghajani, and M. A. Kasevich, Phys. Rev. Lett. 96, 077 401 (2006).

    Article  Google Scholar 

  97. P. Baum and A. H. Zewail, Proc. Nat. Acad. Sci. USA 103, 16105 (2006).

    Article  ADS  Google Scholar 

  98. R. K. Raman, Y. Murooka, C.-Y. Ruan, et al., Phys. Rev. Lett. 101, 077 401 (2008).

    Article  Google Scholar 

  99. C.-Y. Ruan, Y. Murooka, R. K. Raman, and R. A. Murdick, Nano Lett. 7, 1290 (2007).

    Article  ADS  Google Scholar 

  100. R. A. Murdick, R. K. Raman, Y. Murooka, and C.-Y. Ruan, Phys. Rev. B 77, 245 329 (2007).

    Google Scholar 

  101. W. Wang, T. Lee, and M. A. Reed, Rep. Prog. Phys. 68, 523 (2005).

    Article  ADS  MATH  Google Scholar 

  102. P. Baum and A. H. Zewail, Proc. Natl. Acad. Sci. USA 104, 18409 (2007).

    Article  ADS  Google Scholar 

  103. P. B. Corkum and F. Krausz, Nature Phys. 3, 381 (2007).

    Article  ADS  Google Scholar 

  104. F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009).

    Article  ADS  Google Scholar 

  105. G. Sansone, E. Benedetti, F. Calegary, et. al. Science 314, 443 (2006).

    Article  ADS  Google Scholar 

  106. E. Goulielmakis, V. S. Yakovlev, A. L. Cavalien, et. al. Science 320, 1614 (2008).

    Article  ADS  Google Scholar 

  107. L. Y. Peng, E. A. Pronin, and A. F. Starace, New J. Phys. 10, 025 030 (2008).

    Google Scholar 

  108. E. A. Pronin, A. F. Starace, M. V. Frolov, and N. L. Manakov, Phys. Rev. 80, 063 403 (2009).

    Google Scholar 

  109. E. Fill, L. Veisz, A. Apolonski, and F. F. Krausz, New J. Phys. 8, 272 (2006).

    Article  ADS  Google Scholar 

  110. S. A. Hilbert, C. Uiterwaal, B. Barwick, et al., Proc. Natl. Acad. Sci. USA 106, 10558 (2009).

    Article  ADS  Google Scholar 

  111. H.-C. Shao and A. F. Starace, Phys. Rev. Lett. 105, 263 201 (2010).

    Google Scholar 

  112. L. Pauling, Nature of Chemical Bond (Cornell Univ. Press, 1960).

  113. E. Hukkel, Z. Phys. 70, 204 (1931).

    Article  ADS  Google Scholar 

  114. L. Pauling and G. W. Wheland, J. Chem. Phys. 1, 362 (1933).

    Article  ADS  Google Scholar 

  115. V. A. Lobastov, R. Srinivasan, and A. H. Zewail, Proc. Nat. Acad. Sci. USA 102, 7069 (2005).

    Article  ADS  Google Scholar 

  116. H. Domer and O. Bostanjoglo, Rev. Sci. Instrum. 74, 4369 (2003).

    Article  ADS  Google Scholar 

  117. O. Bostanjoglo, Adv. Imaging Electron Phys. 121, 1 (2002).

    Article  Google Scholar 

  118. M. S. Grinolds, V. A. Lobastov, J. Weissenrieder, and A. H. Zewail, Proc. Nat. Acad. Sci. USA 103, 18427 (2006).

    Article  ADS  Google Scholar 

  119. M. Polanyi and E. Wigner, Z. Phys. Chem. A 139, 439 (1928).

    Google Scholar 

  120. M. S. Evans and M. Polanyi, Trans. Faraday Soc. 31, 875 (1935); 33, 448 (1937).

    Article  Google Scholar 

  121. S. Arrenius, Phys. Chem. 4, 226 (1884).

    Google Scholar 

  122. C. J. Davisson and L. H. Germer, Nature 119, 538 (1927).

    ADS  Google Scholar 

  123. J. P. Thomson and A. Reid, 119, 890 (1927).

  124. H. Mark and R. Wierl, Naturwiss. 18, 205 (1930).

    Article  ADS  Google Scholar 

  125. G. Mark and R. Wierl, Electron Diffraction (Gostekhlit, Leningrad, 1933) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ishchenko.

Additional information

Original Russian Text © A.A. Ishchenko, V.N. Bagratashvili, A.S. Avilov, 2011, published in Kristallografiya, 2011, Vol. 56, No. 5, pp. 805–828.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishchenko, A.A., Bagratashvili, V.N. & Avilov, A.S. Methods for studying the coherent 4D structural dynamics of free molecules and condensed state of matter. Crystallogr. Rep. 56, 751–773 (2011). https://doi.org/10.1134/S1063774511050129

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774511050129

Keywords

Navigation