Skip to main content
Log in

Spectroscopic Redshift Measurements for Galaxy Clusters from the Lockman Hole Survey with the eROSITA Telescope Onboard the SRG Observatory

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We present the first results of our program of optical observations for galaxy clusters from the Lockman Hole X-ray survey with the eROSITA telescope onboard the SRG space observatory. We present the results of spectroscopic redshift measurements for 11 galaxy clusters that have been identified optically among the extended X-ray sources of the SRG/eROSITA survey using data from optical and infrared sky surveys. The spectroscopic observations were carried out in late 2019–early 2020 with the 1.6-m AZT-33IK telescope of the Sayan Observatory and the 6-m SAO RAS telescope (Bolshoi Teleskop Azimutalnyi, BTA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. https://www.sao.ru/hq/lsfvo/devices/scorpio-2/grisms_eng.html.

  2. https://www.eso.org/sci/observing/tools/standards.html.

  3. http://iraf.noao.edu/.

  4. http://ckp-rf.ru/ckp/3056/.

REFERENCES

  1. P. A. R. Ade, N. Aghanim, M. Arnaud, et al. (Planck Intemediate Results XXVI), Astron. Astrophys. 582, A29 (2015).

    Article  Google Scholar 

  2. V. L. Afanasiev and A. V. Moiseev, Baltic Astron. 20, 363 (2011).

    ADS  Google Scholar 

  3. V. L. Afanasiev, S. N. Dodonov, V. R. Amirkhanyan, and A. V. Moiseev, Astrophys. Bull. 71, 479 (2016).

    Article  ADS  Google Scholar 

  4. R. Ahumada, C. A. Prieto, A. Almeida, F. Anders, S. F. Anders, et al. (SDSS Collab.), Astrophys. J. Suppl. Ser. 249, 3 (2020).

    Article  ADS  Google Scholar 

  5. F. D. Albareti, C. A. Prieto, A. Almeida, et al. (SDSS Collab.), Astrophys. J. Suppl. Ser. 233, 25 (2017).

    Article  ADS  Google Scholar 

  6. G. Bruzual and S. Charlot, Mon. Not. R. Astron. Soc. 344, 1000 (2003).

    Article  ADS  Google Scholar 

  7. R. A. Burenin, A. L. Amvrosov, M. V. Eselevich, V. M. Grigor’ev, V. A. Aref’ev, V. C. Vorob’ev, A. A. Lutovinov, M. G. Revnivtsev, S. Yu. Sazonov, A. Yu. Tkachenko, G. A. Khorunzhev, A. L. Yaskovich, and M. N. Pavlinsky, Astron. Lett. 41, 295 (2016).

    Article  ADS  Google Scholar 

  8. R. A. Burenin, I. F. Bikmaev, I. M. Khamitov, I. A. Zaznobin, G. A. Khorunzhev, M. V. Eselevich, V. L. Afanasiev, S. N. Dodonov, J.-A. Rubino-Martín, N. Aghanim, and R. A. Sunyaev, Astron. Lett. 44, 297 (2018).

    Article  ADS  Google Scholar 

  9. K. C. Chambers, E. A. Magnier, N. Metcalfe, H. A. Flewelling, M. E. Huber, et al., arXiv:1612.05560 (2016).

  10. A. Dey, D. J. Schlegel, D. Lang, R. Blum, K. Burleigh, X. Fan, et al., Astron. J. 157, 168 (2019).

    Article  ADS  Google Scholar 

  11. J. M. Dickey and F. J. Lockman, Ann. Rev. Astron. Astrophys. 28, 215 (1990).

    Article  ADS  Google Scholar 

  12. A. R. Duffy, J. Schaye, S. T. Kay, and C. Dalla Vecchia, Mon. Not. R. Astron. Soc. 390, 1 (2008).

    Article  Google Scholar 

  13. G. Hasinger, R. Burg, R. Giacconi, G. Hartner, M. Schmidt, et al., Astron. Astrophys. 275, 1 (1993).

    ADS  Google Scholar 

  14. G. Hasinger, B. Altieri, M. Arnaud, X. Barcons, J. Bergeron, et al., Astron. Astrophys. 365, L45 (2001).

    Article  ADS  Google Scholar 

  15. K. Kettula, S. Giodini, E. van Uitert, H. Hoekstra, A. Finoguenov, et al., Mon. Not. R. Astron. Soc. 451, 2 (2015).

    Article  Google Scholar 

  16. F. J. Lockman, K. Jahoda, and D. McCammon, Astrophys. J. 302, 432 (1986).

    Article  ADS  Google Scholar 

  17. S. Mateos, X. Barcons, F. J. Carrera, M. T. Ceballos, G. Hasinger, et al., Astron. Astrophys. 444, 1 (2005).

    Article  Google Scholar 

  18. A. M. Meisner, D. Lang, and D. J. Schlegel, Astron. J. 154, 161 (2017).

    Article  ADS  Google Scholar 

  19. J. F. Navarro, C. S. Frenk, and S. D. M. White, Astrophys. J. 462, 563 (1996).

    Article  ADS  Google Scholar 

  20. P. Predehl, R. Andritschke, V. Arefiev, V. Babyshkin, O. Batanov, W. Becker, et al., Astron. Astrophys. (in press); arXiv:2010.03477 (2020).

  21. S. R. Rosen, N. A. Webb, M. G. Watson, J. Ballet, D. Barret, et al., Astron. Astrophys. 590, A1 (2016).

    Article  Google Scholar 

  22. C. L. Sarazin, Rev. Mod. Phys. 58, 1 (1986).

    Article  ADS  Google Scholar 

  23. R. A. Sunyaev et al., Astron. Astrophys. (2021, in press).

  24. A. Vikhlinin, R. A. Burenin, H. Ebeling, W. R. Forman, A. Hornstrup, et al., Astrophys. J. 692, 2 (2009).

    Google Scholar 

  25. Z. L. Wen, J. L. Han, and F. S. Liu, Astrophys. J. Suppl. Ser. 199, 2 (34) (2012).

  26. E. L. Wright, P. R. M. Eisenhardt, A. K. Mainzer, M. E. Ressler, R. M. Cutri, et al., Astron. J. 140, 1868 (2010).

    Article  ADS  Google Scholar 

  27. Y. Yang, R. F. Mushotzky, A. T. Steffen, A. J. Barger, and L. L. Cowie, Astron. J. 128, 1501 (2004).

    Article  ADS  Google Scholar 

  28. I. A. Zaznobin, R. A. Burenin, I. F. Bikmaev, I. M. Khamitov, G. A. Khorunzhev, V. V. Konoplev, M. V. Eselevich, V. L. Afanasiev, S. N. Dodonov, J.-A. Rubino-Martín, N. Aghanim, and R. A. Sunyaev, Astron. Lett. 45, 49 (2019).

    Article  ADS  Google Scholar 

  29. I. A. Zaznobin, R. A. Burenin, I. F. Bikmaev, I. M. Khamitov, G. A. Khorunzhev, A. R. Lyapin, M. V. Eselevich, V. L. Afanasiev, S. N. Dodonov, and R. A. Sunyaev, Astron. Lett. 46, 79 (2020).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by RSF grant no. 18-12-00520. The measurements with the AZT-33IK telescope were performed within the basic financing of the FNI II.16 program and were obtained using the equipment of the Angara sharing center.Footnote 4 The observations with the SAO RAS telescope are supported by the Ministry of Science and Higher Education of the Russian Federation (including contract no. 05.619.21.0016, unique project identifier RFMEFI61919X0016). In this study we used observational data from the eROSITA telescope onboard the SRG observatory. The SRG observatory was built by Roskosmos in the interests of the Russian Academy of Sciences represented by its Space Research Institute (IKI) within the framework of the Russian Federal Space Program, with the participation of the Deutsches Zentrum für Luft- und Raumfahrt (DLR). The SRG/eROSITA X-ray telescope was built by a consortium of German Institutes led by MPE, and supported by DLR. The SRG spacecraft was designed, built, launched, and is operated by the Lavochkin Association and its subcontractors. The science data are downlinked via the Deep Space Network Antennae in Bear Lakes, Ussurijsk, and Baykonur, funded by Roskosmos. The eROSITA data used in this work were processed using the eSASS software system developed by the German eROSITA consortium and the proprietary data reduction and analysis software developed by the Russian eROSITA Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Zaznobin.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaznobin, I.A., Burenin, R.A., Lyapin, A.R. et al. Spectroscopic Redshift Measurements for Galaxy Clusters from the Lockman Hole Survey with the eROSITA Telescope Onboard the SRG Observatory. Astron. Lett. 47, 141–149 (2021). https://doi.org/10.1134/S1063773721030075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773721030075

Keywords:

Navigation