Skip to main content
Log in

On the Dynamical Foundations of the Lidov–Kozai Theory

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The Lidov–Kozai theory developed by each of the authors independently in 1961–1962 is based on qualitative methods of studying the evolution of orbits for the satellite version of the restricted three-body problem (Hill’s problem). At present, this theory is in demand in various fields of science: in the field of planetary research within the Solar system, the field of exoplanetary systems, and the field of high-energy physics in interstellar and intergalactic space. This has prompted me to popularize the ideas that underlie the Lidov–Kozai theory based on the experience of using this theory as an efficient tool for solving various problems related to the study of the secular evolution of the orbits of artificial planetary satellites under the influence of external gravitational perturbations with allowance made for the perturbations due to the polar planetary oblateness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, Encyclopaedia of Mathematical Sciences (Editorial URSS, Moscow, 2002; Springer, Berlin, 2006), p. 416.

    Google Scholar 

  2. C. Charlier, Celestial Mechanics (Veit, Leipzig, 1902; Fizmatlit,Moscow, 1966), rus. p. 627.

    Google Scholar 

  3. P. E. El’yasberg, Introduction to the Theory of Flight of Artificial Earth Satellites (Fizmatlit, Moscow, 1965; Israel Program for Scientific Translation, Jerusalem, 1967), rus. p. 540.

    Google Scholar 

  4. Yu. F. Gordeeva, Cosmic Res. 6, 450 (1968).

    ADS  Google Scholar 

  5. Y. Kozai, Astron. J. 67, 591 (1962).

    Article  ADS  MathSciNet  Google Scholar 

  6. M. L. Lidov, Iskusstv. Sputniki Zemli 8, 5 (1961).

    Google Scholar 

  7. M. L. Lidov, in Problems of the Motion of Artificial Celestial Bodies, Proceedings of the Conference on General and Applied Problems of Theoretical Astronomy, Moscow, Nov. 20–25, 1961 (Astron. Sovet AN SSSR, 1963), p. 119.

    Google Scholar 

  8. M. L. Lidov and M. V. Yarskaya, Cosmic Res. 12, 139 (1974)].

    ADS  Google Scholar 

  9. L. G. Luk’yanov and G. I. Shirmin, Lectures on Celestial Mechanics (Almaaty, 2009), p. 276 [in Russian].

    Google Scholar 

  10. A. S. Matvienko and V. V. Orlov, Astron. Lett. 41, 824 (2015)].

    Article  ADS  Google Scholar 

  11. N. D. Moiseev, Tr. GAISh 15 (1), 100 (1945).

    Google Scholar 

  12. A. Morbidelli, Modern Celestial Mechanics: Dynamics in the Solar System, Advances in Astronomy and Astrophysics (Taylor and Francis, London, 2002; Moscow, Izhevsk, 2014, p. 413).

    Google Scholar 

  13. C. Murray and S. Dermott, Solar System Dynamics (Cambridge Univ. Press, Cambridge, 2000; Fizmatlit, Moscow, 2010, p. 588).

    Google Scholar 

  14. D. E. Okhotsimskii, T. M. Eneev, and G. P. Taratynova, Usp. Fiz. Nauk 63, 33 (1957).

    Article  Google Scholar 

  15. V. I. Prokhorenko, Cosmic Res. 40, 264 (2002).

    Article  ADS  Google Scholar 

  16. V. I. Prokhorenko, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 2 Suppl., 63 (2006).

    Google Scholar 

  17. V. I. Prokhorenko, Tr.MIAN RAN 259, 156 (2007).

    MathSciNet  Google Scholar 

  18. V. I. Prokhorenko, Cosmic Res. 48, 174 (2010).

    Article  ADS  Google Scholar 

  19. V. I. Prokhorenko, Funct. Anal. Other Math. 3, 135 (2011). doi 10.1007.s11853-011-0046-y

    Article  MathSciNet  Google Scholar 

  20. V. I. Prokhorenko, Cosmic Res. 52, 125 (2014).

    Article  ADS  Google Scholar 

  21. V. I. Prokhorenko, Cosmic Ballistics—from Origin to Future, Proceedings of the Seminar on Mechanics, Control and Informatics Dedicated to 100 Years from P.E. El’yasberg’s Birthday, June 17–19, 2014, Tarusa, Russia, Ed. by R. R. Nazirov (IKI RAN,Moscow, 2015), p. 130.

  22. I. I. Shevchenko, The Lidov–Kozai Effect— Applications in Exoplanet Research and Dynamical Astronomy, Astrophys. Space Sci. Library (Springer, 2017), p. 194 [in Russian].

    Google Scholar 

  23. M. F. Subbotin, Course of Celestial Mechanics (ONTI, Moscow, Leningrad, 1937), Vol. 2 [in Russian].

    Google Scholar 

  24. M. F. Subbotin, Introduction to Theoretical Astronomy (Fizmatlit,Moscow, 1968), p. 800 [in Russian].

    Google Scholar 

  25. M. A. Vashkovyak, Astron. Lett. 22, 207 (1996).

    ADS  Google Scholar 

  26. M. A. Vashkovyak, Astron. Lett. 24, 682 (1998).

    ADS  Google Scholar 

  27. M. A. Vashkovyak, Astron. Lett. 25, 476 (1999).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Prokhorenko.

Additional information

Original Russian Text © V.I. Prokhorenko, 2018, published in Pis’ma v Astronomicheskii Zhurnal, 2018, Vol. 44, No. 1, pp. 52–70.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prokhorenko, V.I. On the Dynamical Foundations of the Lidov–Kozai Theory. Astron. Lett. 44, 49–66 (2018). https://doi.org/10.1134/S1063773717120052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773717120052

Keywords

Navigation