Skip to main content
Log in

Dark Matter Halos in Numerical Models at Redshifts 0 ≤ z ≤ 9

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

For the numerical model in the range of redshifts \(0 \leqslant z \leqslant 9\), we examined the properties and evolution of dark matter halos using a previously proposed method of compact analysis that allows separating the influence of random and regular factors on the main characteristics of the dark matter halo. In the investigated range of redshifts, a monotonic evolution of the average values of the basic parameters of small halo structures into a central massive object is observed through sequential hierarchical merging. These basic parameters include the circular velocity \({{{v}}_{c}}\), the parameter \({{w}_{c}} = {{{v}}_{c}}{\text{/}}r\), and the mass. In the range \(3 \leqslant z \leqslant 9\), the parameters evolve slowly, while in the range \(0 \leqslant z \leqslant 3\), they evolve rapidly. The evolution of the dark matter halos formed before reionization is characterized by a slow change in their average characteristics and the properties of the halo outskirts. The important role of early-formed massive structural elements is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Notes

  1. The concentration parameter is defined as cvir = Rvir/r0, where r0 is the characteristic radius in the NFW density profile, see (7) below.

  2. http://www.multidark.es

  3. https://www.cosmosim.org

  4. https://www.cosmosim.org

REFERENCES

  1. E. Komatsu, K. M. Smith, J. Dunkley, C. L. Bennett, et al., Astrophys. J. Suppl. 192, 18 (2011).

    Article  Google Scholar 

  2. P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, et al., Astron. Astrophys. 594, 13 (2016).

    Article  Google Scholar 

  3. N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, et al., Astron. Astrophys. 641, A6 (2020).

    Article  Google Scholar 

  4. D. J. Eisenstein, I. Zehavi, D. W. Hogg, R. Scoccimarro, et al., Astrophys. J. 633, 560 (2005).

    Article  ADS  Google Scholar 

  5. A. Cuceu, J. Farr, P. Lemos, and A. Font-Ribera, J. Cosmol. Astropart. Phys., No. 10, 044 (2019).

  6. V. Bromm and N. Yoshida, Ann. Rev. Astron. Astrophys. 49, 373 (2011); arXiv: 1102.4638 [astro-ph.CO].

    Article  ADS  Google Scholar 

  7. M. McQuinn, Ann. Rev. Astron. Astrophys. 54, 313 (2016).

    Article  ADS  CAS  Google Scholar 

  8. J. Bullock and M. Boylan-Kolchin, Ann. Rev. Astron. Astrophys. 55, 343 (2017).

    Article  ADS  CAS  Google Scholar 

  9. A. V. Zasov, A. S. Saburova, A. V. Khoperskov, and S. A. Khoperskov, Phys. Usp. 60, 3 (2017).

    Article  ADS  CAS  Google Scholar 

  10. T. Naab and J. P. Ostriker, Ann. Rev. Astron. Astrophys. 55, 59 (2017).

    Article  ADS  CAS  Google Scholar 

  11. J. Tumlinson, M. S. Peebles, and J. K. Werk, Ann. Rev. Astron. Astrophys. 55, 389 (2017).

    Article  ADS  Google Scholar 

  12. R. Wechsler and J. Tinker, Ann. Rev. Astron. Astrophys. 56, 435 (2018).

    Article  ADS  CAS  Google Scholar 

  13. P. Salucci, Astron. Astrophys. Rev. 27, 2 (2019).

    Article  ADS  Google Scholar 

  14. J. Zavala and C. S. Frenk, Galaxies 7 (4), 81 (2019).

    Article  ADS  Google Scholar 

  15. J. D. Simon, Ann. Rev. Astron. Astrophys. 57, 375 (2019).

    Article  ADS  Google Scholar 

  16. I. de Martino, S. S. Chakrabarty, V. Cesare, A. Gallo, L. Ostorero, and A. Diaferio, Universe 6 (8), 107 (2020).

    Article  ADS  CAS  Google Scholar 

  17. L. Lovisari, S. Ettori, M. Gaspari, and P. A. Giles, Universe 7 (5), 139 (2021).

    Article  ADS  CAS  Google Scholar 

  18. S. Paduroiu, Universe 8 (2), 76 (2022).

    Article  ADS  CAS  Google Scholar 

  19. R. E. Angulo and O. Hahn, Liv. Rev. Comput. Astrophys. 8, 1 (2022).

    Article  ADS  Google Scholar 

  20. J. M. Bardeen, J. R. Bond, N. Kaiser, and A. S. Szalay, Astrophys. J. 304, 15 (1986).

    Article  ADS  CAS  Google Scholar 

  21. S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).

    Article  ADS  Google Scholar 

  22. D. Lynden-Bell, Mon. Not. R. Astron. Soc. 136, 101 (1967).

    Article  ADS  Google Scholar 

  23. Ya. B. Zel’dovich, Astron. Astrophys. 5, 84 (1970).

    ADS  Google Scholar 

  24. A. G. Doroshkevich, Sov. Astron. 24, 152 (1980).

    ADS  Google Scholar 

  25. J. Fillmore and P. Goldreich, Astrophys. J. 281, 1 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  26. A. V. Gurevich and K. P. Zybin, Phys. Usp. 38, 687 (1995).

    Article  ADS  Google Scholar 

  27. M. Demiański and A. G. Doroshkevich, Mon. Not. R. Astron. Soc. 306, 779 (1999).

    Article  ADS  Google Scholar 

  28. M. Demiański and A. G. Doroshkevich, Astron. Astrophys. 422, 423 (2004).

    Article  ADS  Google Scholar 

  29. S. Hirano, N. Yoshida, Y. Sakurai, and M. S. Fujii, Astrophys. J. 855, 17 (2018).

    Article  ADS  Google Scholar 

  30. W. H. Press and P. Schechter, Astrophys. J. 187, 425 (1974).

    Article  ADS  Google Scholar 

  31. J. R. Bond, S. Cole, G. Efstathiou, and N. Kaiser, Astrophys. J. 379, 440 (1991).

    Article  ADS  Google Scholar 

  32. R. K. Sheth and G. Tormen, Mon. Not. R. Astron. Soc. 329, 61 (2002).

    Article  ADS  Google Scholar 

  33. R. K. Sheth, Mon. Not. R. Astron. Soc. 345, 1200 (2003).

    Article  ADS  Google Scholar 

  34. R. K. Sheth and G. Tormen, Mon. Not. R. Astron. Soc. 350, 1385 (2004).

    Article  ADS  Google Scholar 

  35. R. K. Sheth and G. Tormen, Mon. Not. R. Astron. Soc. 349, 1464 (2004).

    Article  ADS  CAS  Google Scholar 

  36. J. Diemand, M. Kuhlen, and P. Madau, Astrophys. J. 667, 859 (2007).

    Article  ADS  Google Scholar 

  37. M. Vogelsberger and S. White, Mon. Not. R. Astron. Soc. 413, 1419 (2011).

    Article  ADS  Google Scholar 

  38. A. Klypin, S. Trujillo-Gomez, and J. Primack, Astrophys. J. 740, 102 (2011).

    Article  ADS  Google Scholar 

  39. M. G. Walker, M. Mateo, E. W. Olszewski, J. Penarrubia, N. W. Evans, and G. Gilmore, Astrophys. J. 704, 1274 (2009).

    Article  ADS  Google Scholar 

  40. M. S. Pawlowski, J. Pflamm-Altenburg, and P. Kroupa, Mon. Not. R. Astron. Soc. 423, 1109 (2012).

    Article  ADS  Google Scholar 

  41. M. Demiański, A. G. Doroshkevich, S. Pilipenko, and S. Gottlober, Mon. Not. R. Astron. Soc. 414, 1813 (2011).

    Article  ADS  Google Scholar 

  42. J. Stücker, R. E. Angulo, O. Hahn, and S. D. M. White, Mon. Not. R. Astron. Soc. 509, 1703 (2022).

    Article  ADS  Google Scholar 

  43. P. J. E. Peebles, Astrophys. J. 155, 393 (1969).

    Article  ADS  Google Scholar 

  44. A. G. Doroshkevich, Astrofizika 6, 581 (1970).

    ADS  MathSciNet  Google Scholar 

  45. S. White, Astrophys. J. 286, 38 (1984).

    Article  ADS  Google Scholar 

  46. V. Springel, J. Wang, M. Vogelsberger, A. Ludlow, et al., Mon. Not. R. Astron. Soc. 391, 1685 (2008).

    Article  ADS  Google Scholar 

  47. T. Ishiyama, Astrophys. J. 788, 27 (2014).

    Article  ADS  Google Scholar 

  48. M. Boylan-Kolchin, V. Springel, S. White, A. Jenkins, and G. Lemson, Mon. Not. R. Astron. Soc. 398, 1150 (2009).

    Article  ADS  Google Scholar 

  49. A. Klypin, G. Yepes, S. Gottloeber, F. Prada, and S. Hess, Mon. Not. R. Astron. Soc. 457, 4340 (2016).

    Article  ADS  CAS  Google Scholar 

  50. T. J. Armitage, D. J. Harnes, S. T. Kay, Y. M. Bahe, C. Dalla Vecchia, R. A. Crain, and T. Theuns, Mon. Not. R. Astron. Soc. 474, 3746 (2018).

    Article  ADS  CAS  Google Scholar 

  51. J. Wang, S. Bose, C. Frenk, L. Gao, A. Jenkins, V. Springel, and S. D. M. White, Nature (London, U.K.) 585, 39 (2020).

    Article  ADS  CAS  Google Scholar 

  52. A. E. Bayer, A. Banerjee, and Yu. Feng, J. Cosmol. Astropart. Phys., No. 01, 016 (2021).

  53. B. Faure, F. Bournaud, J. Fensch, E. Daddi, M. Behrendt, A. Burkert, and J. Richard, Mon. Not. R. Astron. Soc. 502, 4641 (2021).

    Article  ADS  CAS  Google Scholar 

  54. M. Demiański, A. Doroshkevich, T. Larchenkova, and S. Pilipenko, Mon. Not. R. Astron. Soc. 525, 1922 (2023).

    Article  ADS  Google Scholar 

  55. J. Shull, B. D. Smith, and C. W. Danforth, Astrophys. J. 759, 23 (2012).

    Article  ADS  Google Scholar 

  56. J. A. S. Fortunato, W. S. Hipólito-Ricaldi, and M. V. dos Santos, arXiv: 2307.04711 [astro-ph.CO] (2023).

  57. T. Lemos, R. S. Goncalves, J. C. Carvalho, and J. S. Alcaniz, arXiv: 2307.06911 [astro-ph.CO] (2023).

  58. M. Ayromlou, D. Nelson, and A. Pillepich, Mon. Not. R. Astron. Soc. 524, 5391 (2022); arXiv: 2211.07659 [astro-ph.GA].

    Article  ADS  Google Scholar 

  59. B. Wang and J.-J. Wei, Astrophys. J. 944, 50 (2023); arXiv: 2211.02209 [astro-ph.CO].

    Article  ADS  Google Scholar 

  60. I. Labbe, P. van Dokkum, E. Nelson, R. Bezanson, et al., Nature (London, U.K.) 616 (7956), 266 (2023).

    Article  ADS  CAS  Google Scholar 

  61. M. Xiao, P. Oesch, D. Elbaz, L. Bing, et al., arXiv: 2309.02492 [astro-ph.GA] (2023).

  62. S. Fujimoto, R. Bezanson, I. Labbe, G. Brammer, et al., arXiv: 2309.07834 [astro-ph.GA] (2023).

  63. C. T. Donnan, D. J. McLeod, R. J. McLure, J. S. Dunlop, A. C. Carnall, F. Cullen, and D. Magee, Mon. Not. R. Astron. Soc. 520, 4554 (2023).

    Article  ADS  Google Scholar 

  64. D. J. McLeod, C. T. Donnan, R. J. McLure, J. S. Dunlop, et al., arXiv: 2304.14469 [astro-ph.GA] (2023).

  65. N. Menci, M. Castellano, P. Santini, E. Merlin, A. Fontana, and F. Shankar, Astrophys. J. 938, L5 (2022).

    Article  ADS  Google Scholar 

  66. M. Castellano, A. Fontana, T. Treu, E. Merlin, et al., Astrophys. J. 948, L14 (2023).

    Article  ADS  Google Scholar 

  67. E. Di Valentino, L. A. Anchordoqui, O. Akarsu, Y. Ali-Haimoud, et al., Astropart. Phys. 131, 102606 (2021); arXiv: 2008.11283 [astro-ph.CO].

  68. E. Di Valentino, L. A. Anchordoqui, O. Akarsu, Y. Ali-Haimoud, et al., Astropart. Phys. 131, 102605 (2021); arXiv: 2008.11284 [astro-ph.CO],

  69. E. Di Valentino, L. A. Anchordoqui, O. Akarsu, Y. Ali-Haimoud, et al., Astropart. Phys. 131, 102604 (2021); arXiv: 2008.11285 [astro-ph.CO],

  70. L. A. Anchordoqui, E. Di Valentino, S. Pan, and W. Yang, J. High Energy Astrophys. 32, 28 (2021).

    Article  ADS  Google Scholar 

  71. W. Beenakker and D. Venhoek, arXiv: 2101.01372 [astro-ph.CO] (2021).

  72. M. Demyanskii, A. G. Doroshkevich, T. Larchenkova, and S. Pilipenko, Astron. Rep. 66, 766 (2022).

    Article  ADS  Google Scholar 

  73. J. F. Navarro, C. S. Frenk, and S. D. M. White, Mon. Not. R. Astron. Soc. 275, 720 (1995).

    Article  ADS  Google Scholar 

  74. J. F. Navarro, C. S. Frenk, and S. D. M. White, Astrophys. J. 490, 493 (1997).

    Article  ADS  Google Scholar 

  75. M. I. Demiański, A. G. Doroshkevich, and T. I. Larchenkova, Astron. Lett. 48, 361 (2022).

    Article  ADS  Google Scholar 

  76. M. I. Demiański, A. G. Doroshkevich, and T. I. Larchenkova, Astron. Rep. 67, 439 (2022).

    Article  ADS  Google Scholar 

  77. M. Ramella, M. J. Geller, and J. P. Huchra, Astrophys. J. 384, 396 (1992).

    Article  ADS  Google Scholar 

  78. A. J. Kelly, A. Jenkins, A. Deason, A. Fattahi, R. J. J. Grand, R. Pakmor, V. Springel, and C. S. Frenk, Mon. Not. R. Astron. Soc. 514, 3113 (2022).

    Article  ADS  CAS  Google Scholar 

  79. A. Doroshkevich, D. L. Tucker, S. Allam, and M. J. Way, Astron. Astrophys. 418, 7 (2004).

    Article  ADS  CAS  Google Scholar 

  80. J. Sommer-Larsen, S. Gelato, and H. Vedel, Astrophys. J. 519, 501 (1999).

    Article  ADS  Google Scholar 

  81. A. Chiti, A. Frebel, J. D. Simon, D. Erkal, et al., Nat. Astron. 5, 392 (2021).

    Article  ADS  Google Scholar 

  82. A. Chiti, J. D. Simon, A. Frebel, A. B. Pace, A. P. Ji, and T. S. Li, Astrophys. J. 939, 41 (2022).

    Article  ADS  Google Scholar 

  83. D. Makarov and I. Karachentsev, Mon. Not. R. Astron. Soc. 412, 2498 (2011).

    Article  ADS  Google Scholar 

  84. M. Ginolfi, E. Piconcelli, L. Zappacosta, G. C. Jones, et al., arXiv: 2208.03248 [astro-ph.GA] (2022).

  85. A. Boksenberg and W. L. W. Sargent, Astrophys. J. Suppl. 218, 7 (2015); arXiv: 1410.3784 [astro-ph.GA].

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the anonymous reviewer for helpful comments.

The halo catalogs used in the numerical models are obtained from the CosmoSim database.Footnote 4 This database service is provided by the Institute for Astrophysics Potsdam.

Funding

The study was carried out as part of the Lebedev Physical Institute program NNG 41-2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Demiański.

Ethics declarations

The authors declare that they have no conflicts of i-nterest.

Additional information

Translated by M. Chubarova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demiański, M., Doroshkevich, A., Larchenkova, T. et al. Dark Matter Halos in Numerical Models at Redshifts 0 ≤ z ≤ 9. Astron. Rep. 67, 1265–1274 (2023). https://doi.org/10.1134/S1063772923120028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772923120028

Keywords:

Navigation