Skip to main content
Log in

Study of the Secular Evolution of Circumbinary Systems Using R-Toroid and Gaussian Ring Models

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Two methods have been developed to study secular (apsidal and nodal) orbital precession in circumbinary systems consisting of a binary star and an exoplanet. The first method is based on a model of three R-toroids and is intended to study the precession of test orbits. For exosystems Kepler-413 and Kepler-453, the mutual orientation of the angular momenta of the stellar pair \({{L}_{{12}}}\) and the planet \({{L}_{p}}\) was found relative to the Laplace plane, the ratio \(\gamma = {{L}_{{12}}}{\text{/}}{{L}_{p}}\) and zonal harmonics of the potential of R-toroids were calculated. Equations for the frequencies of both types of precession were obtained and solved, and the dominant influence of the toroids of the stellar pair was established. The second method is based on the model of interacting Gaussian rings and is intended to study the secular evolution of the orbits of the stars and the planet of the circumbinary system itself. This approach made it possible to accurately calculate the periods of nodal precession for the stars and the planet; for example, in the Kepler-413 system, these periods are, respectively, \(T_{1}^{0} = 11.63 \pm 0.28\) years, \(T_{2}^{0} = 11.39 \pm 0.28\) years, \(T_{p}^{0} = 11.49 \pm 0.28\) years. A subtle effect of the planet’s influence on the disruption of the 1 : 1 resonance for the periods of nodal precession of the stars was revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. B. P. Kondratyev and V. S. Kornoukhov, Astron. Rep. 65 (2021, in press).

  2. St. Raetz, T. O. B. Schmidt, S. Czesla, T. Klocová, et al., Mon. Not. R. Astron. Soc. 460, 2834 (2016).

    Article  ADS  Google Scholar 

  3. J. W. Barnes, J. C. van Eyken, B. K. Jackson, D. R. Ciardi, and J. J. Fortney, Astrophys. J. 774, 53 (2013).

    Article  ADS  Google Scholar 

  4. Ch. Chen, A. Franchini, S. H. Lubow, R. G. Martin, Mon. Not. R. Astron. Soc. 490, 5634 (2019).

    Article  ADS  Google Scholar 

  5. B. C. Bromley and S. J. Kenyon, Astron. J. 161, 25 (2021).

    Article  ADS  Google Scholar 

  6. A. S. Hamers, M. X. Cai, J. Roa, and N. Leigh, Mon. Not. R. Astron. Soc. 480, 3800 (2018).

    Article  ADS  Google Scholar 

  7. B. P. Kondratyev, Solar Syst. Res. 46, 352 (2012).

    Article  ADS  Google Scholar 

  8. V. B. Kostov, P. R. McCullough, J. A. Carter, M. Deleuil, et al., Astrophys. J. 784, 14 (2014).

    Article  ADS  Google Scholar 

  9. Y. Judkovsky, A. Ofir, and O. Aharonson, Astron. J. 160, 195 (2020).

    Article  ADS  Google Scholar 

  10. W. F. Welsh, J. A. Orosz, D. R. Short, W. D. Cochran, et al., Astrophys. J. 809, 26 (2015).

    Article  ADS  Google Scholar 

  11. B. P. Kondratyev and V. S. Kornoukhov, Astron. Rep. 64, 434 (2020).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Interdisciplinary Scientific and Educational School of Moscow State University “Fundamental and Applied Space Research.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. P. Kondratyev.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondratyev, B.P., Kornoukhov, V.S. Study of the Secular Evolution of Circumbinary Systems Using R-Toroid and Gaussian Ring Models. Astron. Rep. 65, 588–597 (2021). https://doi.org/10.1134/S1063772921080072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772921080072

Keywords:

Navigation