Skip to main content
Log in

Observability of Single Neutron Stars at SRG/eROSITA

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

A four-year sky survey with the use of the eROSITA telescope on board the Spektr-RG observatory with focusing optics will provide the best coverage in the soft (0.5–2 keV) and standard (2–10 keV) X-ray ranges, both in terms of sensitivity and angular resolution. We have investigated the possibility of detecting various types of single neutron stars using eROSITA. Among the already known objects, eROSITA will be able to detect more than 160 pulsars, 21 magnetars, 7 central compact objects, all seven sources of the Magnificent Seven, and two other X-ray single neutron stars during the four-year mission. In addition, eROSITA is expected to be able to detect accreting single neutron stars, as well as discover new cooling neutron stars and magnetars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. Online catalog of ATNF pulsars, see https://www.atnf.csiro.au/research/pulsar/psrcat/

  2. https://wiki.mpe.mpg.de/eROSITA

  3. Note that the dark signal of the eROSITA detectors in the range 8–10 keV is very small; therefore, the above estimate seems to be applicable to the range 0.2–10 keV as well.

  4. See online catalog http://www.physics.mcgill.ca/pulsar/magnetar/main.html

REFERENCES

  1. J. Truemper, Science (Washington, DC, U. S.) 260, 1769 (1993).

    Article  ADS  Google Scholar 

  2. J. Chadwick, Nature (London, U.K.) 129, 312 (1932).

    Article  ADS  Google Scholar 

  3. W. Baade and F. Zwicky, Proc. Natl. Acad. Sci. U. S. A. 20, 259 (1934).

    Article  ADS  Google Scholar 

  4. A. Hewish, S. J. Bell, J. D. H. Pilkington, P. F. Scott, and R. A. Collins, Nature (London, U.K.) 217, 709 (1968).

    Article  ADS  Google Scholar 

  5. A. K. Harding, in Astrophysics of Compact Objects, Proceedings of the International Conference on Astrophysics of Compact Objects, Ed. by Y.-F. Yuan, X.-D. Li, and D. Lai, AIP Conf. Proc. 968, 104 (2008).

  6. R. N. Manchester, G. B. Hobbs, A. Teoh, and M. Hobbs, Astron. J. 129, 1993 (2005); arXiv: astro-ph/0412641.

    Article  ADS  Google Scholar 

  7. A. Y. Potekhin, D. A. Zyuzin, D. G. Yakovlev, M. V. Beznogov, and Y. A. Shibanov, Mon. Not. R. Astron. Soc. 496, 5052 (2020); arXiv: 2006.15004 [astro-ph.HE].

  8. A. Treves, R. Turolla, S. Zane, and M. Colpi, Publ. Astron. Soc. Pacif. 112, 297 (2000); arXiv: astro-ph/9911430.

  9. W. Becker, Astrophys. Space Sci. Libr. 357, 91 (2009).

    Article  ADS  Google Scholar 

  10. J. P. Ostriker, M. J. Rees, and J. Silk, Astrophys. Lett. 6, 179 (1970).

    ADS  Google Scholar 

  11. V. G. Shvartsman, Sov. Astron. 14, 662 (1971).

    ADS  Google Scholar 

  12. A. Merloni, P. Predehl, W. Becker, H. Böhringer, et al.; arXiv: 1209.3114 [astro-ph.HE] (2012).

  13. J. Trümper, Adv. Space Res. 2, 241 (1982).

    Article  ADS  Google Scholar 

  14. R. D. Saxton, A. M. Read, P. Esquej, M. J. Freyberg, B. Altieri, and D. Bermejo, Astron. Astrophys. 480, 611 (2008); arXiv: 0801.3732 [astro-ph].

    Article  ADS  Google Scholar 

  15. N. Clerc, M. E. Ramos-Ceja, J. Ridl, G. Lamer, et al., Astron. Astrophys. 617, A92 (2018); arXiv: 1806.08652 [astro-ph.CO].

  16. P. Predehl, R. Andritschke, V. Arefiev, V. Babyshkin, et al., Astron. Astrophys. 647, A1 (2021); arXiv: 2010.03477 [astro-ph.HE].

  17. A. Philippov, A. Tchekhovskoy, and J. G. Li, Mon. Not. R. Astron. Soc. 441, 1879 (2014); arXiv: 1311.1513 [astro-ph.HE].

    Article  ADS  Google Scholar 

  18. V. S. Beskin, Phys. Usp. 61, 353 (2018); arXiv: 1807.08528 [astro-ph.HE].

  19. S. B. Popov and R. Turolla, Astrophys. Space Sci. 341, 457 (2012); arXiv: 1204.0632 [astro-ph.HE].

    Article  ADS  Google Scholar 

  20. A. Noutsos, D. H. F. M. Schnitzeler, E. F. Keane, M. Kramer, and S. Johnston, Mon. Not. R. Astron. Soc. 430, 2281 (2013); arXiv: 1301.1265 [astro-ph.GA].

    Article  ADS  Google Scholar 

  21. A. P. Igoshev and S. B. Popov, Mon. Not. R. Astron. Soc. 473, 3204 (2018); arXiv: 1709.10385 [astro-ph.HE].

  22. P. S. Shternin, D. G. Yakovlev, C. O. Heinke, W. C. G. Ho, and D. J. Patnaude, Mon. Not. R. Astron. Soc. 412, L108 (2011); arXiv: 1012.0045 [astro-ph.SR].

    Article  ADS  Google Scholar 

  23. A. Y. Potekhin, G. Chabrier, and D. G. Yakovlev, Astron. Astrophys. 323, 415 (1997); arXiv: astro-ph/9706148.

    ADS  Google Scholar 

  24. A. Y. Potekhin, V. Urpin, and G. Chabrier, Astron. Astrophys. 443, 1025 (2005); arXiv: astro-ph/0508415.

    Article  ADS  Google Scholar 

  25. A. Possenti, R. Cerutti, M. Colpi, and S. Mereghetti, Astron. Astrophys. 387, 993 (2002); arXiv: astro-ph/0109452.

    Article  ADS  Google Scholar 

  26. A. D. Khokhryakova, D. A. Lyapina, and S. B. Popov, Astron. Lett. 45, 120 (2019).

    Article  ADS  Google Scholar 

  27. R. Morrison and D. McCammon, Astrophys. J. 270, 119 (1983).

    Article  ADS  Google Scholar 

  28. M. Marelli, A. de Luca, D. Salvetti, N. Sartore, et al., Astrophys. J. 765, 36 (2013); arXiv: 1212.6664 [astro-ph.HE].

    Article  ADS  Google Scholar 

  29. C.-Y. Ng, R. W. Romani, W. F. Brisken, S. Chatterjee, and M. Kramer, Astrophys. J. 654, 487 (2007); arXiv: astro-ph/0611068.

    Article  ADS  Google Scholar 

  30. D. A. Swartz, G. G. Pavlov, T. Clarke, G. Castelletti, et al., Astrophys. J. 808, 84 (2015); arXiv:1506.05507 [astro-ph.HE].

  31. A. Danilenko, A. Karpova, D. Ofengeim, Y. Shibanov, and D. Zyuzin, Mon. Not. R. Astron. Soc. 493, 1874 (2020); arXiv: 2001.10968 [astro-ph.HE].

  32. A. de Luca, P. A. Caraveo, S. Mereghetti, M. Negroni, and G. F. Bignami, Astrophys. J. 623, 1051 (2005); arXiv: astro-ph/0412662.

    Article  ADS  Google Scholar 

  33. G. G. Pavlov, V. E. Zavlin, D. Sanwal, V. Burwitz, and G. P. Garmire, Astrophys. J. 552, L129 (2001).

    Article  ADS  Google Scholar 

  34. V. E. Zavlin, Astrophys. J. 665, L143 (2007); arXiv: astro-ph/0703802.

    Article  ADS  Google Scholar 

  35. K. E. McGowan, S. Zane, M. Cropper, J. A. Kennea, F. A. Cordova, C. Ho, T. Sasseen, and W. T. Vestrand, Astrophys. J. 600, 343 (2004); arXiv: astro-ph/0309445.

    Article  ADS  Google Scholar 

  36. O. Kargaltsev, M. Durant, Z. Misanovic, and G. G. Pavlov, Science (Washington, DC, U. S.) 337, 946 (2012); arXiv: 1208.5400 [astroph.HE].

  37. A. Karpova, A. Danilenko, Y. Shibanov, P. Shternin, and D. Zyuzin, Astrophys. J. 789, 97 (2014); arXiv: 1405.5041 [astro-ph.SR].

    Article  ADS  Google Scholar 

  38. W. Hermsen, L. Kuiper, J. W. T. Hessels, D. Mitra, et al., Mon. Not. R. Astron. Soc. 466, 1688 (2017); arXiv: 1612.04392 [astro-ph.HE].

  39. L. C. C. Lin, C. Y. Hui, K. T. Li, J. Takata, C. P. Hu, A. K. H. Kong, D. C. C. Yen, and Y. Chou, Astrophys. J. Lett. 793, L8 (2014); arXiv: 1408.4741 [astro-ph.HE].

    Article  ADS  Google Scholar 

  40. X. H. Li, F. J. Lu, and T. P. Li, Astrophys. J. 628, 931 (2005); arXiv: astro-ph/0504293.

    Article  ADS  Google Scholar 

  41. A. Kirichenko, A. Danilenko, P. Shternin, Y. Shibanov, et al., Astrophys. J. 802, 17 (2015); arXiv: 1501.04594 [astro-ph.SR].

  42. K. E. McGowan, S. Zane, M. Cropper, W. T. Vestrand, and C. Ho, Astrophys. J. 639, 377 (2006); arXiv: astro-ph/0508439.

    Article  ADS  Google Scholar 

  43. M. A. McLaughlin, A. G. Lyne, D. R. Lorimer, M. Kramer, et al., Nature (London, U.K.) 439, 817 (2006); arXiv: astro-ph/0511587.

    Article  ADS  Google Scholar 

  44. N. Rea, M. A. McLaughlin, B. M. Gaensler, P. O. Slane, et al., Astrophys. J. 703, L41 (2009); arXiv: 0906.1394 [astro-ph.HE].

    Article  ADS  Google Scholar 

  45. R. Turolla, S. Zane, and A. L. Watts, Rep. Prog. Phys. 78, 116901 (2015); arXiv: 1507.02924 [astro-ph.HE].

  46. S. A. Olausen and V. M. Kaspi, Astrophys. J. Suppl. 212, 6 (2014); arXiv: 1309.4167 [astro-ph.HE].

    Article  Google Scholar 

  47. A. De Luca, J. Phys.: Conf. Ser. 932, 012006 (2017); arXiv: 1711.07210 [astro-ph.HE].

  48. P. R. Hebbar, C. O. Heinke, and W. C. G. Ho, Mon. Not. R. Astron. Soc. 491, 1585 (2020); arXiv: 1909.04744 [astro-ph.HE].

  49. D. Vigan’o, N. Rea, J. A. Pons, R. Perna, D. N. Aguilera, and J. A. Miralles, Mon. Not. R. Astron. Soc. 434, 123 (2013); arXiv: 1306.2156 [astro-ph.SR].

    Article  ADS  Google Scholar 

  50. S. Park, O. Kargaltsev, G. G. Pavlov, K. Mori, P. O. Slane, J. P. Hughes, D. N. Burrows, and G. P. Garmire, Astrophys. J. 695, 431 (2009); arXiv: 0809.4281 [astro-ph].

    Article  ADS  Google Scholar 

  51. G. Cassam-Chenai, A. Decourchelle, J. Ballet, J. L. Sauvageot, G. Dubner, and E. Giacani, Astron. Astrophys. 427, 199 (2004); arXiv: astro-ph/0407333.

    Article  ADS  Google Scholar 

  52. I. Lovchinsky, P. Slane, B. M. Gaensler, J. P. Hughes, C.-Y. Ng, J. S. Lazendic, J. D. Gelfand, and C. L. Brogan, Astrophys. J. 731, 70 (2011); arXiv: 1102.5333 [astro-ph.HE].

    Article  ADS  Google Scholar 

  53. D. Klochkov, V. Suleimanov, M. Sasaki, and A. Santangelo, Astron. Astrophys. 592, L12 (2016); arXiv: 1607.08021 [astro-ph.HE].

  54. V. Burwitz, F. Haberl, R. Neuhäuser, P. Predehl, J. Trümper, and V. E. Zavlin, Astron. Astrophys. 399, 1109 (2003); arXiv: astro-ph/0211536.

    Article  ADS  Google Scholar 

  55. F. Haberl, V. E. Zavlin, J. Trümper, and V. Burwitz, Astron. Astrophys. 419, 1077 (2004); arXiv: astro-ph/0312413.

    Article  ADS  Google Scholar 

  56. M. H. van Kerkwijk, D. L. Kaplan, M. Durant, S. R. Kulkarni, and F. Paerels, Astrophys. J. 608, 432 (2004); arXiv: astro-ph/0402418.

    Article  ADS  Google Scholar 

  57. F. Haberl, A. D. Schwope, V. Hambaryan, G. Hasinger, and C. Motch, Astron. Astrophys. 403, L19 (2003); arXiv: astro-ph/0304088.

    Article  ADS  Google Scholar 

  58. S. Zane, M. Cropper, R. Turolla, L. Zampieri, M. Chieregato, J. J. Drake, and A. Treves, Astrophys. J. 627, 397 (2005); arXiv: astro-ph/0503239 [astro-ph].

    Article  ADS  Google Scholar 

  59. F. Haberl, C. Motch, V. E. Zavlin, K. Reinsch, et al., Astron. Astrophys. 424, 635 (2004); arXiv: astro-ph/040548.

  60. R. E. Rutledge, D. B. Fox, and A. H. Shevchuk, Astrophys. J. 672, 1137 (2008); arXiv: 0705.1011 [astro-ph].

    Article  ADS  Google Scholar 

  61. A. M. Pires, C. Motch, R. Turolla, S. B. Popov, A. D. Schwope, and A. Treves, Astron. Astrophys. 583, A117 (2015); arXiv: 1508.05246 [astro-ph.HE].

  62. A. M. Pires, A. D. Schwope, and C. Motch, Astron. Nachr. 338, 213 (2017); arXiv:1611.07723 [astro-ph.HE].

  63. A. Kolodzig, M. Gilfanov, R. Sunyaev, S. Sazonov, and M. Brusa, Astron. Astrophys. 558, A89 (2013); arXiv: 1212.2151 [astro-ph.CO].

    Article  ADS  Google Scholar 

  64. J. Comparat, A. Merloni, M. Salvato, K. Nandra, et al., Mon. Not. R. Astron. Soc. 487, 2005 (2019); arXiv: 1901.10866 [astro-ph.GA].

  65. V. M. Lipunov, Astrophysics of Neutron Stars (Springer, Berlin, 1992).

    Book  Google Scholar 

  66. A. Treves and M. Colpi, Astron. Astrophys. 241, 107 (1991).

    ADS  Google Scholar 

  67. A. G. Lyne and D. R. Lorimer, Nature (London, U.K.) 369, 127 (1994).

    Article  ADS  Google Scholar 

  68. S. B. Popov, M. Colpi, A. Treves, R. Turolla, V. M. Lipunov, and M. E. Prokhorov, Astrophys. J. 530, 896 (2000); arXiv: astro-ph/9910114.

    Article  ADS  Google Scholar 

  69. P. A. Boldin and S. B. Popov, Mon. Not. R. Astron. Soc. 407, 1090 (2010); arXiv: 1004.4805 [astro-ph.HE].

    Article  ADS  Google Scholar 

  70. S. B. Popov, K. A. Postnov, and N. I. Shakura, Mon. Not. R. Astron. Soc. 447, 2817 (2015); arXiv: 1412.4066 [astro-ph.HE].

    Article  ADS  Google Scholar 

  71. M. A. Agueros, S. F. Anderson, B. Margon, B. Posselt, et al., Astron. J. 131, 1740 (2006); arXiv: astro-ph/0511659 [astro-ph].

    Article  ADS  Google Scholar 

  72. A. D. Schwope, G. Hasinger, R. Schwarz, F. Haberl, and M. Schmidt, Astron. Astrophys. 341, L51 (1999); arXiv: astro-ph/9811326.

    ADS  Google Scholar 

  73. D. L. Kaplan, in Proceedings of the International Conference on Astrophysics of Compact Objects, Ed. by Y.‑F. Yuan, X.-D. Li, and D. Lai, AIP Conf. Proc. 968, 129 (2008); arXiv: 0801.1143 [astro-ph].

  74. J. Robrade and J. H. M. M. Schmitt, Astron. Astrophys. 435, 1073 (2005); arXiv: astro-ph/0504145.

    Article  ADS  Google Scholar 

  75. M. A. Agueros, S. F. Anderson, K. R. Covey, S. L. Hawley, et al., Astrophys. J. Suppl. 181, 444 (2009); arXiv: 0903.4202 [astro-ph.SR].

    Article  Google Scholar 

  76. J. H. M. M. Schmitt and C. Liefke, Astron. Astrophys. 417, 651 (2004); arXiv: astro-ph/0308510.

    Article  ADS  Google Scholar 

  77. E. Behar, S. Dado, A. Dar, and A. Laor, Astrophys. J. 734, 26 (2011); arXiv: 1101.4662 [astro-ph.CO].

    Article  ADS  Google Scholar 

  78. R. L. C. Starling, R. Willingale, N. R. Tanvir, A. E. Scott, K. Wiersema, P. T. O’Brien, A. J. Levan, and G. C. Stewart, Mon. Not. R. Astron. Soc. 431, 3159 (2013); ar-Xiv: 1303.0844 [astro-ph.HE].

    Article  ADS  Google Scholar 

  79. W. Deng and B. Zhang, Astrophys. J. Lett. 783, L35 (2014); arXiv: 1401.0059 [astro-ph.HE].

    Article  ADS  Google Scholar 

  80. N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, et al., Astron. Astrophys. 641, A6 (2020); arXiv: 1807.06209 [astro-ph.CO].

  81. R. Willingale, R. L. C. Starling, A. P. Beardmore, N. R. Tanvir, and P. T. O’Brien, Mon. Not. R. Astron. Soc. 431, 394 (2013); arXiv: 1303.0843 [astro-ph.HE].

    Article  ADS  Google Scholar 

  82. A. A. Meiksin, Rev. Mod. Phys. 81, 1405 (2009); arXiv: 0711.3358 [astro-ph].

    Article  ADS  Google Scholar 

  83. M. McQuinn, Ann. Rev. Astron. Astrophys. 54, 313 (2016); arXiv: 1512.00086 [astro-ph.CO].

Download references

ACKNOWLEDGMENTS

The authors thank E.V. Filippova for helpful comments, as well as an anonymous reviewer, whose comments significantly improved the quality of the article.

Funding

The work of A.D.Kh. was funded by a grant of the Development Program of Moscow State University “Leading Scientific School.” The work of A.D.Kh was supported by the Theoretical Physics and Mathematics Advancement Foundation “BASIS”, grant no. 20-2-1-77-1. A.B.V.’s work was carried out under the subsidy allocated as part of Russian Government Program of Competitive Growth of Kazan Federal University. The work of S.B.P. was supported by the Ministry of science and higher education of Russian Federation under the contract 075-15-2020-778 in the framework of the Large scientific projects program within the national project “Science.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Khokhryakova.

Additional information

Translated by M. Chubarova

Appendix

Appendix

To proceed from Eq. (16) to Eq. (17), we use the relationship between the redshift \(z\) and the scale factor a:

$$a = 1{\text{/}}(1 + z).$$

Differentiating the scale factor over time, we obtain

$$\frac{{da}}{{dt}} = - \frac{1}{{{{{(1 + z)}}^{2}}}}\frac{{dz}}{{dt}}.$$

Therefore,

$$\frac{{dz}}{{dt}} = - {{(1 + z)}^{2}}\frac{{da}}{{dt}}.$$

By definition, the Hubble constant \(H\) is

$$H = \dot {a}{\text{/}}a.$$

Let us substitute this expression into the formula for \(\dot {z}\):

$$\frac{{dz}}{{dt}} = - {{(1 + z)}^{2}}\frac{{da}}{{dt}} = - {{(1 + z)}^{2}}H(z)a = - H(z)(1 + z).$$

The Hubble constant depends on time and can be written using the well-known expression:

$$\begin{gathered} H(z) = {{H}_{0}}[{{\Omega }_{r}}{{(1 + z)}^{4}} \\ \, + {{\Omega }_{m}}{{(1 + z)}^{3}} + {{\Omega }_{c}}{{(1 + z)}^{2}} + {{\Omega }_{\Lambda }}{{]}^{{1/2}}}. \\ \end{gathered} $$

Here, \({{H}_{0}}\) is the Hubble constant at the present point of time, and in square brackets are the terms associated with the contribution of various components to the total density: radiation (\({{\Omega }_{r}}\)), matter (\({{\Omega }_{m}}\)), curvature (\({{\Omega }_{c}}\)), and cosmological constant (\({{\Omega }_{\Lambda }}\))

$$\begin{gathered} \frac{{dz}}{{dt}} = - H(z)(1 + z) - {{H}_{0}}(1 + z)[{{\Omega }_{r}}{{(1 + z)}^{4}} \\ \, + {{\Omega }_{m}}{{(1 + z)}^{3}} + {{\Omega }_{c}}{{(1 + z)}^{2}} + {{\Omega }_{\Lambda }}{{]}^{{1/2}}}. \\ \end{gathered} $$

Now, we obtain

$$\frac{{dz}}{{dt}} = - {{H}_{0}}(1 + z){{[{{\Omega }_{m}}{{(1 + z)}^{3}} + {{\Omega }_{\Lambda }}]}^{{1/2}}},$$

where it is taken that \({{\Omega }_{r}} = {{\Omega }_{c}} = 0\). Now, we express the local time interval in terms of the redshift interval:

$$dt = - dz\frac{1}{{{{H}_{0}}(1 + z){{{[{{\Omega }_{m}}{{{(1 + z)}}^{3}} + {{\Omega }_{\Lambda }}]}}^{{1/2}}}}}.$$

Substituting this into the column density formula, we obtain

$${{N}_{{\text{H}}}} = - \int\limits_z^0 \,{{n}_{0}}{{a}^{{ - 3}}}\frac{c}{{{{H}_{0}}}}{{[{{\Omega }_{m}}{{(1 + z)}^{3}} + {{\Omega }_{\Lambda }}]}^{{ - 1/2}}}{{(1 + z)}^{{ - 1}}}dz.$$

Here, \({{n}_{0}}\) is the average density of the intergalactic medium at the present time. Note that the absorbing matter is distributed unevenly (see the reviews [82, 83]). Now, we replace the scale factor in the equation with \(a = 1{\text{/}}(1 + z)\) and obtain the final formula for the dependence of the column density in the intergalactic medium on the redshift \(z\):

$${{N}_{{\text{H}}}} = - \frac{{{{n}_{0}}c}}{{{{H}_{0}}}}\int\limits_z^0 \,\frac{{{{{(1 + z)}}^{2}}}}{{{{{[{{\Omega }_{m}}{{{(1 + z)}}^{3}} + {{\Omega }_{\Lambda }}]}}^{{1/2}}}}}dz.$$
(19)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khokhryakova, A.D., Biryukov, A.V. & Popov, S.B. Observability of Single Neutron Stars at SRG/eROSITA. Astron. Rep. 65, 615–630 (2021). https://doi.org/10.1134/S1063772921080060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772921080060

Keywords:

Navigation