Skip to main content
Log in

The dynamics of correlations in open-star cluster models

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Two-time and two-point (two-particle) correlations are calculated for several parameters of the stellar motions, the densities, and the phase densities of model open clusters, in the vicinities of the cluster stars. The correlation times and correlation radii are determined in spaces of the parameters considered. The distributions of the two-point correlations for the distances between stars in the coordinate and velocity spaces of the stars are calculated. The local maxima of these distributions are used to determine the parameters of density waves, the potential, and the phase density in the model clusters. Analysis of the fine structure of regions of concentration in the two-point correlations in space of mutual distances between stars suggests the formation of polarization clouds near a number of such distances between stars. The distributions of the phase-density correlations are calculated, and the dynamics of these distributions analyzed. The dispersions of these distributions depend strongly on the presence of broad “wings” in the distributions (i.e., of strong correlations in the system). These dispersions are considered as a measure of the degree of correlation of phase-density fluctuations in model clusters. A growth in the correlations with time is observed for 50% of the cluster models considered. Flows of the phase-density correlations are investigated. A dominant correlation flow from the region of strong to the region of weak correlations is identified, leading to a flow of kinetic energy toward the cluster center. The rate at which this flow heats the model cluster core is estimated. Signs of weak turbulence are detected in the stellar motions in the model cluster cores with the highest degree of non-stationary in the regular field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Prigogin and G. Severne, Physica 32, 1376 (1966).

    Article  ADS  Google Scholar 

  2. I. Prigogine, Non-Equilibrium Statistical Mechanics (Wiley Interscience, New York, 1963; Mir, Moscow, 1964).

    Google Scholar 

  3. I. Prigogine and I. Stengers, Time, Chaos, and the Quantum (Piper, Munich, 1993; Progress, Moscow, 1994).

    Google Scholar 

  4. G. Severne and M. J. Haggerty, Astrophys. Space Sci. 45, 287 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  5. I. H. Gilbert, Astrophys. J. 152, 1043 (1968).

    Article  ADS  Google Scholar 

  6. I. H. Gilbert, Astrophys. J. 159, 239 (1970).

    Article  ADS  Google Scholar 

  7. J. Goodman, D. C. Heggie, and P. Hut, Astrophys. J. 415, 715 (1993).

    Article  ADS  Google Scholar 

  8. H. E. Kandrup, M. E. Magon, and H. C. Smith, Astrophys. J. 428, 458 (1994).

    Article  ADS  Google Scholar 

  9. N. Komatsu, T. Kiwata, and S. Kimura, Physica A 387, 2267 (2007).

    Article  ADS  Google Scholar 

  10. V. M. Danilov and L. V. Dorogavtseva, Astron. Rep. 52, 467 (2008).

    Article  ADS  Google Scholar 

  11. S. J. Aarseth, Astron. Astrophys. 35, 237 (1974).

    ADS  Google Scholar 

  12. V.M. Danilov, Astron. Lett. 23, 322 (1997).

    ADS  Google Scholar 

  13. H. E. Kandrup, Ann. N.Y. Acad. Sci. 848, 28 (1998); arXiv:astro-ph/9707103v1 (1997).

    Article  ADS  Google Scholar 

  14. H. E. Kandrup, Astrophys. Space Sci. 112, 215 (1985).

    Article  ADS  Google Scholar 

  15. V. M. Danilov and L. V. Dorogavtseva, Astron. Rep. 47, 483 (2003).

    Article  ADS  Google Scholar 

  16. Yu. L. Klimontovich, Statistical Physics (Nauka, Moscow, 1982; Harwood Academic, New York, 1986).

    Google Scholar 

  17. V. M. Danilov, Astron. Rep. 55, 473 (2011).

    Article  ADS  Google Scholar 

  18. I. R. King, Astron. J. 67, 471 (1962).

    Article  ADS  Google Scholar 

  19. V. M. Danilov, Astron. Rep. 54, 514 (2010)].

    Article  ADS  Google Scholar 

  20. W. Saslaw, Gravitational Physics of Stellar and Galactic Systems (Cambridge, Cambridge University Press, 1987; Moscow, Mir, 1989).

    Google Scholar 

  21. Yu. L. Klimontovich, Statistical Theory of Open Systems (Kluwer, Dordrecht, 1995; Yanus, Moscow, 1995).

    Book  MATH  Google Scholar 

  22. V. M. Danilov and E. V. Leskov, Astron. Rep. 49, 190 (2005).

    Article  ADS  Google Scholar 

  23. V.M. Danilov, Astron. Rep. 49, 604 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  24. V.M. Danilov, Astron. Rep. 46, 887 (2002).

    Article  ADS  Google Scholar 

  25. V.M. Danilov, Astron. Rep. 52, 888 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  26. V. N. Tsytovich, Theory of Turbulent Plasma (Moscow, Atomizdat, 1971; Consultants Bureau, New York, 1977).

    Google Scholar 

  27. I. L. Genkin, Sov. Phys. Dokl. 16, 261 (1971).

    ADS  Google Scholar 

  28. S. Chandrasekhar, Principles of Stellar Dynamics (Univ. Chicago, Chicago, 1942; Inostr. Liter., Moscow, 1948).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Danilov.

Additional information

Original Russian Text © V.M. Danilov, S.I. Putkov, 2012, published in Astronomicheskii Zhurnal, 2012, Vol. 89, No. 8, pp. 689–704.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danilov, V.M., Putkov, S.I. The dynamics of correlations in open-star cluster models. Astron. Rep. 56, 623–637 (2012). https://doi.org/10.1134/S1063772912080021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772912080021

Keywords

Navigation