Skip to main content
Log in

Specific Features of Applying Signal Time Reversal in a Nonstationary Waveguide

  • ACOUSTIC SIGNAL PROCESSING AND COMPUTER SIMULATION
  • Published:
Acoustical Physics Aims and scope Submit manuscript

The article presents the results of applying the signal time reversal method in the ultrasound (~130 kHz) under strong spot heating conditions (>250°С) and deformation of the investigated sample—a steel plate. It is shown that the distortions of the time-reversed signal during propagation, caused by changes in the sample properties, can be significantly reduced by reducing the duration of the processed signals and by using several receivers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. M. Ohtsu, Y. Kaminaga, and M. C. Munwam, Constr. Build. Mater. 13 (1–2), 57 (1999).

    Article  Google Scholar 

  2. S. Sengupta, A. K. Datta, and P. Topdar, Lat. Am. J. Solids Struct. 12 (8), 1565 (2015).

    Article  Google Scholar 

  3. R. K. Ing, N. Quieffin, S. Catheline, and M. Fink, Appl. Phys. Lett. 87 (20), Art. No. 204104 (2005). https://doi.org/10.1063/1.2130720

    Article  ADS  Google Scholar 

  4. C. Chen, Y. Li, and F. G. Yuan, Shock Vib. 20 (3), 561 (2013).

    Article  Google Scholar 

  5. R. Ernst and J. Dual, Ultrasonics 54 (6), 1522 (2014).

    Article  Google Scholar 

  6. B. E. Anderson, M. Griffa, P.-Y. Le Bas, T. J. Ulrich, and P. A. Johnson, J. Acoust. Soc. Am. 129 (1), EL8 (2011). https://doi.org/10.1121/1.3526379

    Article  Google Scholar 

  7. L. Chehami, E. Moulin, J. de Rosny, C. Prada, O. B. Matar, and F. Benmeddour, J. Appl. Phys. 115 (10), Art. No. 104901 (2014). https://doi.org/10.1063/1.4867522

    Article  ADS  Google Scholar 

  8. A. P. Brysev, R. V. Klopotov, and L. M. Krutyansky, Bull. Russ. Acad. Sci.: Phys. 79 (10), 1251 (2015).

    Article  Google Scholar 

  9. V. L. Preobrazhensky, P. N. Shirkovskiy, and P. Pernod, Bull. Russ. Acad. Sci.: Phys. 79 (10), 1238 (2015).

    Article  Google Scholar 

  10. F. Ciampa and M. Meo, J. Acoust. Soc. Am. 130 (1), 168 (2011). https://doi.org/10.1121/1.3598458

    Article  ADS  Google Scholar 

  11. C. Hudin, J. Lozada, and V. Hayward, J. Sound Vib. 333 (6), 1818 (2014).

  12. G. Ribay, S. Catheline, D. Clorennec, et al., IEEE Trans. Ultrason., Ferroelectr. Freq. Control 54 (2), 378 (2007).

    Article  Google Scholar 

  13. L. N. Stepanova, K. V. Kanifadin, and S. A. Laznenko, Russ. J. Nondestr. Test. 46 (1), 56 (2010).

    Article  Google Scholar 

  14. G. Montaldo, D. Palacio, M. Tanter, et al., IEEE Trans. Ultrason., Ferroelectr. Freq. Control 52 (9), 1489 (2005).

    Article  Google Scholar 

  15. A. N. Ser’eznov, L. N. Stepanova, E. Yu. Lebedev, et al., Russ. J. Nondestr. Test. 45 (5), 310 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Mironov.

Ethics declarations

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mironov, M.A., Pyatakov, P.A. & Shulyapov, S.A. Specific Features of Applying Signal Time Reversal in a Nonstationary Waveguide. Acoust. Phys. 67, 648–652 (2021). https://doi.org/10.1134/S1063771021330046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771021330046

Keywords:

Navigation