Skip to main content
Log in

Mathematical model of acoustic speech production with mobile walls of the vocal tract

  • Acoustic Signal Processing. Computer Simulation
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

A mathematical speech production model is considered that describes acoustic oscillation propagation in a vocal tract with mobile walls. The wave field function satisfies the Helmholtz equation with boundary conditions of the third kind (impedance type). The impedance mode corresponds to a threeparameter pendulum oscillation model. The experimental research demonstrates the nonlinear character of how the mobility of the vocal tract walls influence the spectral envelope of a speech signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. L. F. Helmholtz, Die Lehre von den Tonempfindungen als physiologische Grundlage fur die Theorie der Musik (Vieweg, Braunschweig, 1863).

    MATH  Google Scholar 

  2. G. Fant, Acoustic Theory of Speech Production (Mouton, The Hague, Netherlands; Nauka, Moscow, 1964).

    Google Scholar 

  3. L. R. Rabiner and R. B. Shafer, Digital Processing of Speech Signals (Prentice Hall, 1978; Radio I Svyaz’, Moscow, 1981).

    Google Scholar 

  4. N. Morgan and B. Gold, Speech and Audio Signal Processing: Processing and Perception of Speech and Music (Wiley, New York, 2000).

    Google Scholar 

  5. V. N. Sorokin, Speech Processes (Narodn. Obraz., Moscow, 2012) [in Russian].

    Google Scholar 

  6. I. S. Makarov, Acoust. Phys. 55, 261 (2009).

    Article  ADS  Google Scholar 

  7. V. N. Sorokin, Theory of Speech Production (Radio i Svyaz’, Moscow, 1985) [in Russian].

    Google Scholar 

  8. P. S. Landa and O. V. Rudenko, Akust. Zh. 35, 855 (1989).

    Google Scholar 

  9. J. L. Kelly and C. C. Lochbaum, Proc. 4th Int. Congress on Acoustics, Copenhagen. 1962, pp. 1–4.

    Google Scholar 

  10. J. Mullen, Physical modeling of the vocal tract with the 2D digital waveguide mesh. PhD Thesis, (Univ. of York, 2006).

    Google Scholar 

  11. M. D. A. Speed, Voice synthesis using the three-dimensional digital waveguide mesh. PhD Thesis, (Univ. of York, 2012).

    Google Scholar 

  12. M. Karjalainen and M. Erkut, EURASIP J. Appl. Signal Proc., No. 7, 978 (2004).

    Article  Google Scholar 

  13. T. Kako and T. Kano, Proc. 11th Int. Conf. on Domain Decomposition Methods, Bergen. 1999, pp. 268–273.

    Google Scholar 

  14. A. Hannukainen, T. Lukkari, J. Malinen, and P. Palo, J. Acoust. Soc. Am. 122, EL1 (2007).

    Article  ADS  Google Scholar 

  15. E. J. Brambley, Proc. Acoustics-012, Nantes, 2012.

    Google Scholar 

  16. M. Atig, J.-P. Dalmont, and J. Gilbert, Comptes Rendus de l’Acad. des Sci. Ser. IIB–Mechanics, 1 (2004).

    Google Scholar 

  17. Ph. Morse, Vibration and Sound (MacGraw-Hill, 1948; Gos. Izd. Tekhn.-Teor. Lit., Moscow, 1949).

    Google Scholar 

  18. G. Fant, J. Phonet., No. 14, 393 (1986).

    Google Scholar 

  19. A. N. Tikhonov and A. A. Samarskii, Mathematical Physics Equations (Mos. Gos. Univ., Moscow, 1999) [in Russian].

    MATH  Google Scholar 

  20. D. Colton and R. Kress, Integral Equation Methods in Scattering Theory (Wiley, New York, 1984; Mir, Moscow, 1987).

    MATH  Google Scholar 

  21. P. M. Juhl, The boundary element method for sound field calculations. PhD Thesis Tech. Univ. of Denmark (1993).

    Google Scholar 

  22. N. S. Bakhvalov, N. P. Zhidkov, and G. M. Kobel’kov, Digital Methods (Binom. Labor. Znanii, Moscow, 2003) [in Russian].

    MATH  Google Scholar 

  23. G. Fant, L. Nord, and P. Branderud, J. STL-QPSR 17, 13 (1976).

    Google Scholar 

  24. G. Fant, J. STL-QPSR 2, 121 (1995).

    Google Scholar 

  25. G. Fant, J. Speech Commun., No. 22, 125 (1997).

    Article  Google Scholar 

  26. J. O. Smith, Spectral Audio Signal Processing (CCRMA, Stanford, 2010).

    Google Scholar 

  27. V. N. Sorokin, The Synthesis of Speech (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Lyubimov.

Additional information

Original Russian Text © N.A. Lyubimov, E.V. Zakharov, 2016, published in Akusticheskii Zhurnal, 2016, Vol. 62, No. 2, pp. 227–236.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyubimov, N.A., Zakharov, E.V. Mathematical model of acoustic speech production with mobile walls of the vocal tract. Acoust. Phys. 62, 225–234 (2016). https://doi.org/10.1134/S1063771016020093

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771016020093

Keywords

Navigation