Skip to main content
Log in

Seismic waves and seismic barriers

  • Acoustic Signal Processing and Computer Simulation
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The basic idea of seismic barrier is to protect an area occupied by a building or a group of buildings from seismic waves. Depending on nature of seismic waves that are most probable in a specific region, different kinds of seismic barriers are suggested. For example, vertical barriers resembling a wall in a soil can protect from Rayleigh and bulk waves. The FEM simulation reveals that to be effective, such a barrier should be (i) composed of layers with contrast physical properties allowing “trapping” of the wave energy inside some of the layers, and (ii) depth of the barrier should be comparable or greater than the considered seismic wave length. Another type of seismic barrier represents a relatively thin surface layer that prevents some types of surface seismic waves from propagating. The ideas for these barriers are based on one Chadwick’s result concerning non-propagation condition for Rayleigh waves in a clamped half-space, and Love’s theorem that describes condition of non-existence for Love waves. The numerical simulations reveal that to be effective the length of the horizontal barriers should be comparable to the typical wavelength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Abu-Hejleh, J. G. Zornberg, T. Wang, and J. Watcharamonthein, Geosynth. Int. 9(1) (2002).

  2. D. C. Agnew, in International Handbook of Earthquake and Engineering Seismology (2002), Sec. 81(A), pp. 3–11.

  3. D. V. Balandin, N. N. Bolotnik, and W. D. Pilkey, Appl. Mech. Rev., ASME 53, 237 (2000).

    Article  ADS  Google Scholar 

  4. D. V. Balandin et al., Med. Eng. Phys. 30, 258 (2008).

    Article  Google Scholar 

  5. D. M. Barnett and J. Lothe, Phys. Norv. 7, 13 (1973).

    Google Scholar 

  6. D. M. Barnett and J. Lothe, J. Phys. F 4, 671 (1974).

    Article  ADS  Google Scholar 

  7. D. M. Barnett and J. Lothe, J. Phys. F 4, 1618 (1974).

    Article  ADS  Google Scholar 

  8. A. Bensoussan, J. L. Lions, and G. Papanicolaou, Asymptotic Analysis for Periodic Structures (North-Holland, Amsterdam, 1978).

    MATH  Google Scholar 

  9. F. Blondeau, Techniques de l’Ingerieur, Cours de mecanique des sols de l’E.N.P.C., Chap. C, 248.

  10. C. Braitenberg and M. Zadro, Bull. Seism. Soc. Am. A 97, S6 (2007).

    Article  Google Scholar 

  11. L. Cagniard, “Reflexion et refraction des ondes seismique progressive,” Thesis (Gauthier-Villars and Cie., Paris, 1939).

    Google Scholar 

  12. A. Cecchi and N. L. Rizzi, Int. J. Solid Struct. 38, 29 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Chadwick and P. Borejko, Geophys. J. Int. 118, 279 (1994).

    Article  ADS  Google Scholar 

  14. P. Chadwick and D. A. Jarvis, Proc. R. Soc. London A 366, 517 (1979).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. P. Chadwick and G. D. Smith, Adv. Appl. Mech. 17, 303 (1977).

    Article  MATH  Google Scholar 

  16. P. Chadwick and T. C. T. Ting, Q. Appl. Math. 45, 419 (1987).

    MathSciNet  MATH  Google Scholar 

  17. D. E. Chimenti, Ultrasonics 32, 255 (1994).

    Article  Google Scholar 

  18. P. de Buhan, R. Mangiavacchi, R. Nova, G. Pellegrini, and J. Salencon, Geotechnique 39, 189 (1989).

    Article  Google Scholar 

  19. J. P. den Hartog, Mechanical Vibrations (Dover, New York, 1985).

    Google Scholar 

  20. E. Detournay and A. H.-D. Cheng, Fundamentals of Poroelasticity, Vol. II: Comprehensive Rock Engineering: Principles, Practice and Projects (Pergamon, New York, 1993).

    Google Scholar 

  21. I. Djeran-Maigre and S. V. Kuznetsov, Compt. Rend. Acad. Sci., Paris, Ser. Mecan. 336, 102 (2008).

    MATH  Google Scholar 

  22. G. Eiksund, I. Hoff, and S. Perkins, in Proceedings of the EuroGeo3, DGGT (Germany, Munich, 2004), Vol. 2, pp. 619–624.

    Google Scholar 

  23. G. W. Farnell, Phys. Acoust. 6, 109 (1970).

    Google Scholar 

  24. N. Guo and P. Cawley, Nondestr. Test. Eval. 26, 75 (1993).

    Google Scholar 

  25. S. A. Gunderson, D. M. Barnett, and J. Lothe, Wave Motion 9, 319 (1987).

    Article  MathSciNet  Google Scholar 

  26. N. A. Haskell, Bull. Seismol. Soc. Am. 43, 17 (1953).

    MathSciNet  Google Scholar 

  27. V. Herle, in Proceedings of the 13th Danube-Conference on Geotechnical Engineering (Sloven. Geotechn. Soc., Ljublana, Slovenia, 2006), Vol. 2, pp. 251–256.

    Google Scholar 

  28. K. Ketchart and J. T. H. Wu, Federal Highway Administration, Report No. FHWA-R-01-018 (McLean, VA, USA, 2001).

  29. L. Knopoff, Bull. Seismol. Soc. Am. 54, 431 (1964).

    Google Scholar 

  30. O. Kusakabe, J. Takemura, A. Takahashi, J. Izawa, and S. Shibayama, in Proceedings of the 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (Goa, India, 2008), pp. 1459–1474.

  31. S. V. Kuznetsov, Q. Appl. Math. 60, 577 (2002).

    MATH  Google Scholar 

  32. S. V. Kuznetsov, Q. Appl. Math. 61, 575 (2003).

    MATH  Google Scholar 

  33. S. V. Kuznetsov, Prikl. Mat. Mekh. 70, 141 (2006).

    Google Scholar 

  34. S. V. Kuznetsov, Q. Appl. Math. 64, 153 (2006).

    MATH  Google Scholar 

  35. H. Lamb, Proc. R. Soc. A 93, 114 (1917).

    Article  ADS  MATH  Google Scholar 

  36. T. C. Lim and G. W. Farnell, J. Appl. Phys. 39, 4319 (1968).

    Article  ADS  Google Scholar 

  37. T. C. Lim and G. W. Farnell, J. Acoust. Soc. Am. 45, 845 (1969).

    Article  ADS  Google Scholar 

  38. W. Lin and L. M. Keer, J. Acoust. Soc. Am. 92, 888 (1992).

    Article  ADS  Google Scholar 

  39. G. R. Liu, J. Tani, K. Watanabe, and T. Ohyoshi, J. Appl. Mech. 57, 923 (1990).

    Article  ADS  Google Scholar 

  40. J. Lothe and D. M. Barnett, J. Appl. Phys. 47, 428 (1976).

    Article  ADS  Google Scholar 

  41. A. E. H. Love, Some Problems of Geodynamics (Cambridge Univ., Cambridge, 1911), pp. 165–178.

    MATH  Google Scholar 

  42. M. J. S. Lowe, IEEE Trans. Ultrasonics Ferroelectr. Freq. Control 42, 525 (1995).

    Article  Google Scholar 

  43. A. Maradudin and D. L. Mills, Phys. Rev. B 11, 1392 (1975).

    Article  ADS  Google Scholar 

  44. A. Maradudin and D. L. Mills, Appl. Phys. Lett. 28, 573 (1976).

    Article  ADS  Google Scholar 

  45. A. Maradudin and J. Shen, Phys. Rev. B 22, 4234 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  46. J. C. Michel, H. Moulinec, and P. Suquet, Comp. Meth. Appl. Mech. Eng. 172, 109 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  47. F. Moghaddas-Nejad and J. C. Small, Geotechn. Test. J. ASTM 26(2) (2003).

  48. R. Motamed, K. Itoh, S. Hirose, A. Takahashi, and O. Kusakabe, in Proceedings of SIMULIA Customer Conference 2009 (London, UK, 2008), pp. 402–41.

  49. E. Sanchez-Palencia, Asymptot. Anal. 2, 192 (1983).

    Article  MathSciNet  Google Scholar 

  50. J. G. Scholte, Mon. Not. R. Astron. Soc. 5, 120 (1947).

    MathSciNet  MATH  Google Scholar 

  51. P. R. Sengupta and S. Nath, Sadhana 26, 363 (2001).

    Article  Google Scholar 

  52. K. Sezawa, Bull. Earthquake Res. Inst. Tokyo 3, 1 (1927).

    MathSciNet  Google Scholar 

  53. K. Sezawa and K. Kanai, Bull. Earthquake Res. Inst. Tokyo 17, 1 (1939).

    MathSciNet  Google Scholar 

  54. K. Sobczyk, Proc. Vibr. Probl. 7, 363 (1966).

    MATH  Google Scholar 

  55. R. Stoneley, Proc. R. Soc. London A 106, 416 (1924).

    Article  ADS  Google Scholar 

  56. J. W. Strutt (Lord Rayleigh), Proc. Math. Soc. London 17, 4 (1885).

    Article  Google Scholar 

  57. A. Takahashi, J. Takemura, and T. Shimodaira, in Proceedings of the 15th International Conference on Soil Mechanics and Geotechnical Engineering (Istanbul, Turkey, 2001), pp. 1265–1268.

  58. W. T. Thomson, J. Appl. Phys. 21, 89 (1950).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  59. T. C. T. Ting, Anisotropic Elasticity: Theory and Applications (Oxford Univ., Oxford, 1996).

    MATH  Google Scholar 

  60. T. C. T. Ting, Q. J. Mech. Appl. Math. 55, 297 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  61. I. A. Victorov, Rayleigh and Lamb Waves. Physical Theory and Applications (Plenum, Oxford, 1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Kuznetsov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsov, S.V. Seismic waves and seismic barriers. Acoust. Phys. 57, 420–426 (2011). https://doi.org/10.1134/S1063771011030109

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771011030109

Keywords

Navigation