Skip to main content
Log in

Parameters and Composition of Plasma in a CF4 + H2 + Ar Mixture: Effect of CF4/H2 Ratio

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

The electrophysical parameters of the plasma and the kinetics of plasma-chemical processes in a CF4 + H2 + Ar mixture while varying the CF4/H2 ratio are studied. When using diagnostic methods and plasma modeling together, it is found that replacing tetrafluoromethane with hydrogen (a) leads to a decrease in the plasma density and an increase in electronegativity; and (b) it causes a disproportionately sharp drop in the concentration of fluorine atoms. The reason for the latter effect is the increase in the frequency of the death of atoms in reactions of the CHFx + F → CFx + HF type initiated by heterogeneous recombination via the CFx + H → CHFx mechanism. The simultaneous increase in the concentration of polymer-forming CHxFy (x + y < 3) radicals indicates an increase in the polymerization load of the plasma on the surfaces in contact with it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Wolf, S. and Tauber, R.N., Silicon Processing for the VLSI Era, Vol. 1: Process Technology, New York: Lattice Press, 2000.

    Google Scholar 

  2. Nojiri, K., Dry Etching Technology for Semiconductors, Tokyo: Springer, 2015. https://doi.org/10.1007/978-3-319-10295-5

    Book  Google Scholar 

  3. Lieberman, M.A. and Lichtenberg, A.J., Principles of Plasma Discharges and Materials Processing, New York: Wiley, 1994.

    Google Scholar 

  4. Stoffels, W.W., Stoffels, E., and Tachibana, K., Polymerization of fluorocarbons in reactive ion etching plasmas, J. Vac. Sci. Technol., A, 1998, vol. 16, no. 1, pp. 87–95. https://doi.org/10.1116/1.581016

    Article  Google Scholar 

  5. Standaert, T.E.F.M., Hedlund, C., Joseph, E.A., Oehrlein, G.S., and Dalton, T.J., Role of fluorocarbon film formation in the etching of silicon, silicon dioxide, silicon nitride, and amorphous hydrogenated silicon carbide, J. Vac. Sci. Technol., A, 2004, vol. 22, no. 1, pp. 53–60. https://doi.org/10.1116/1.1626642

    Article  Google Scholar 

  6. Schaepkens, M., Standaert, T.E.F.M., Rueger, N.R., Sebel, P.G.M., Oehrlein, G.S., and Cook, J.M., Study of the SiO2-to-Si3N4 etch selectivity mechanism in inductively coupled fluorocarbon plasmas and a comparison with the SiO2-to-Si mechanism, J. Vac. Sci. Technol., A, 1999, vol. 17, no. 1, pp. 26–37. https://doi.org/10.1116/1.582108

    Article  Google Scholar 

  7. Plumb, I.C. and Ryan, K.R., A model of the chemical processes occurring in CF4/O2 discharges used in plasma etching, Plasma Chem. Plasma Process., 1986, vol. 6, no. 3, pp. 205–230. https://doi.org/10.1007/bf00575129

    Article  Google Scholar 

  8. Kimura, T. and Noto, M., Experimental study and global model of inductively coupled CF4/O2 discharges, J. Appl. Phys., 2006, vol. 100, no. 6, pp. 63303–63304. https://doi.org/10.1063/1.2345461

    Article  Google Scholar 

  9. Efremov, A.M., Bashmakova, D.E., and Kwon, K.-H., Features of plasma composition and fluorine atom kinetics in CHF3 + O2 gas mixture, ChemChemTech, 2023, vol. 66, no. 1, pp. 48–55. https://doi.org/10.6060/ivkkt.20236601.6667

    Article  Google Scholar 

  10. Vasenkov, A.V., Li, X., Oehlein, G.S., and Kushner, M.J., Properties of c-C4F8 inductively coupled plasmas. II. Plasma chemistry and reaction mechanism for modeling of Ar/c-C4F8/O2 discharges, J. Vac. Sci. Technol., A, 2004, vol. 22, no. 3, pp. 511–530. https://doi.org/10.1116/1.1697483

    Article  Google Scholar 

  11. Lim, N., Efremov, A., and Kwon, K.-H., A comparison of CF4, CHF3 and C4F8 + Ar/O2 inductively coupled plasmas for dry etching applications, Plasma Chem. Plasma Process., 2021, vol. 41, no. 6, pp. 1671–1689. https://doi.org/10.1007/s11090-021-10198-z

    Article  Google Scholar 

  12. Baek, S.Y., Efremov, A.M., Bobylev, A.V., Choi, G., and Kwon, K.-H., On relationships between plasma chemistry and surface reaction kinetics providing the etching of silicon in CF4, CHF3, and C4F8 gases mixed with oxygen, Materials, 2023, vol. 16, no. 14, pp. 5043–5044. https://doi.org/10.3390/ma16145043

    Article  Google Scholar 

  13. Marra, D.C. and Aydil, E.S., Effect of H2 addition on surface reactions during CF4/H2 plasma etching of silicon and silicon dioxide films, J. Vac. Sci. Technol., A, 1997, vol. 15, no. 5, pp. 2508–2517. https://doi.org/10.1116/1.580762

    Article  Google Scholar 

  14. Knizikevičius, R., Real dimensional simulation of SiO2 etching in CF4 + H2 plasma, Appl. Surf. Sci., 2004, vol. 222, nos. 1–4, pp. 275–285. https://doi.org/10.1016/j.apsusc.2003.08.077

    Article  Google Scholar 

  15. Gorobchuk, A., Numerical modeling of silicon processing technology in CF4/H2 plasma, Proc. 2015 Int. Siberian Conf. on Control and Communications (SIBCON), Omsk, 2015, pp. 1–4. https://doi.org/10.1109/SIBCON.2015.7147029

  16. Kim, D.S., Kim, J.B., Ahn, D.W., Choe, J.H., Kim, J.S., Jung, E.S., and Pyo, S.G., Atomic layer etching applications in nano-semiconductor device fabrication, Electron. Mater. Lett., 2023, vol. 19, no. 5, pp. 424–441. https://doi.org/10.1007/s13391-023-00409-4

    Article  Google Scholar 

  17. Kim, Y., Kang, H., Ha, H., Kim, C., Cho, S., and Chae, H., Plasma atomic layer etching of molybdenum with surface fluorination, Appl. Surf. Sci., 2023, vol. 627, p. 157309. https://doi.org/10.1016/j.apsusc.2023.157309

    Article  Google Scholar 

  18. Kim, S.Y., Park, I.-S., and Ahn, J., Atomic layer etching of SiO2 using trifluoroiodomethane, Appl. Surf. Sci., 2022, vol. 589, p. 153045. https://doi.org/10.1016/j.apsusc.2022.153045

    Article  Google Scholar 

  19. Kuzmenko, V., Lebedinskij, Y., Miakonkikh, A., and Rudenko, K., Selective atomic layer etching of Al2O3, AlNx and HfO2 in conventional ICP etching tool, Vacuum, 2023, vol. 207, p. 111585. https://doi.org/10.1016/j.vacuum.2022.111585

    Article  Google Scholar 

  20. Efremov, A.M., Murin, D.B., and Kwon, K., Concerning the effect of type of fluorocarbon gas on the output characteristics of the reactive-ion etching process, Russ. Microelectron., 2020, vol. 49, no. 3, pp. 157–165. https://doi.org/10.1134/S1063739720020031

    Article  Google Scholar 

  21. Efremov, A., Lee, J., and Kwon, K.-H., A comparative study of CF4, Cl2 and HBr + Ar inductively coupled plasmas for dry etching applications, Thin Solid Films, 2017, vol. 629, pp. 39–48. https://doi.org/10.1016/j.tsf.2017.03.035

    Article  Google Scholar 

  22. Efremov, A., Lee, B.J., and Kwon, K.-H., On relationships between gas-phase chemistry and reactive-ion etching kinetics for silicon-based thin films (SiC, SiO2 and SixNy) in multi-component fluorocarbon gas mixtures, Materials, 2021, vol. 14, no. 6, pp. 1432–1433. https://doi.org/10.3390/ma14061432

    Article  Google Scholar 

  23. Shun’ko, E.V., Langmuir Probe in Theory and Practice, Boca Raton, Fla.: Universal Publishers, 2008.

    Google Scholar 

  24. Herman, I.P., Optical Diagnostics for Thin Film Processing, San Diego, Calif.: Academic, 1996.

    Google Scholar 

  25. Lopaev, D.V., Volynets, A.V., Zyryanov, S.M., Zotovich, A.I., and Rakhimov, A.T., Actinometry of O, N and F atoms, J. Phys. D: Appl. Phys., 2017, vol. 50, no. 7, p. 75202. https://doi.org/10.1088/1361-6463/50/7/075202

    Article  Google Scholar 

  26. Christophorou, L.G. and Olthoff, J.K., Fundamental Electron Interactions with Plasma Processing Gases, New York: Springer, 2012.

    Google Scholar 

  27. Raju, G.G., Gaseous Electronics. Tables, Atoms and Molecules, Boca Raton, Fla.: CRC Press, 2017.

    Google Scholar 

  28. Škoro, N., Puač, N., Lazović, S., Cvelbar, U., Kokkoris, G., and Gogolides, E., Characterization and global modelling of low-pressure hydrogen-based RF plasmas suitable for surface cleaning processes, J. Phys. D: Appl. Phys., 2013, vol. 46, no. 47, p. 475206. https://doi.org/10.1088/0022-3727/46/47/475206

    Article  Google Scholar 

  29. Iordanova, S., Koleva, I., and Paunska, T., Hydrogen degree of dissociation in a low pressure tandem plasma source, Spectrosc. Lett., 2011, vol. 44, no. 1, pp. 8–16. https://doi.org/10.1080/00387010903386540

    Article  Google Scholar 

  30. Kimura, T. and Kasugai, H., Properties of inductively coupled rf Ar/H2 plasmas: Experiment and global model, J. Appl. Phys., 2010, vol. 107, no. 8, pp. 83308–83309. https://doi.org/10.1063/1.3345084

    Article  Google Scholar 

  31. Lavrov, B.P. and Pipa, A.V., Account of the fine structure of hydrogen atom levels in the effective emission cross sections of Balmer lines excited by electron impact in gases and plasma, Opt. Spectrosc., 2002, vol. 92, no. 5, pp. 647–657. https://doi.org/10.1134/1.1481126

    Article  Google Scholar 

  32. Celik, Y., Aramaki, M., Luggenhölscher, D., and Czarnetzk, U., Determination of electron densities by diode-laser absorption spectroscopy in a pulsed ICP, Plasma Sources Sci. Technol., 2011, vol. 20, p. 15022. https://doi.org/10.1088/0963-0252/20/1/015022

    Article  Google Scholar 

  33. Cunge, G., Ramos, R., Vempaire, D., Touzeau, M., Neijbauer, M., and Sadeghi, N., Gas temperature measurement in CF4, SF6, O2, Cl2, and HBr inductively coupled plasmas, J. Vac. Sci. Technol., A, 2009, vol. 27, no. 3, pp. 471–478. https://doi.org/10.1116/1.3106626

    Article  Google Scholar 

  34. Efremov, A., Son, H.J., Choi, G., and Kwon, K.-H., On mechanisms influencing etching/polymerization balance in multi-component fluorocarbon gas mixtures, Vacuum, 2022, vol. 206, p. 111518. https://doi.org/10.1016/j.vacuum.2022.111518

    Article  Google Scholar 

  35. Ho, P., Johannes, J.E., Buss, R.J., and Meeks, E., Modeling the plasma chemistry of C2F6 and CHF3 etching of silicon dioxide, with comparisons to etch rate and diagnostic data, J. Vac. Sci. Technol., B, 2001, vol. 19, no. 5, pp. 2344–2367. https://doi.org/10.1116/1.1387048

    Article  Google Scholar 

  36. Proshina, O., Rakhimova, T.V., Zotovich, A., Lopaev, D.V., Zyryanov, S.M., and Rakhimov, A.T., Multifold study of volume plasma chemistry in Ar/CF4 and Ar/CHF3 CCP discharges, Plasma Sources Sci. Technol., 2017, vol. 26, no. 7, pp. 75005–75006. https://doi.org/10.1088/1361-6595/aa72c9

    Article  Google Scholar 

  37. Gogolides, D., Mary, D., Rhallabi, A., and Turban, G., RF plasmas in methane: Prediction of plasma properties and neutral radical densities with combined gas-phase physics and chemistry model, Jpn. J. Appl. Phys., 1995, vol. 34, no. 1R, pp. 261–270. https://doi.org/10.1143/JJAP.34.261

    Article  Google Scholar 

  38. Herrebout, D., Bogaerts, A., and Yan, M., One-dimensional fluid model for an rf methane plasma of interest in deposition of diamond-like carbon layers, J. Appl. Phys., 2001, vol. 90, no. 2, pp. 570–579. https://doi.org/10.1063/1.1378059

    Article  Google Scholar 

  39. Semenova, O.A., Efremov, A.M., Barinov, S.M., and Svettsov, V.I., Kinetics and concentration of active particles in nonequilibrium low temperature methane plasma, High Temp., 2014, vol. 52, no. 3, pp. 348–355. https://doi.org/10.1134/S0018151X14020205

    Article  Google Scholar 

  40. Adams, N.G. and Smith, D., Dissociative attachment reactions of electrons with strong acid molecules, J. Chem. Phys., 1986, vol. 86, no. 12, pp. 6728–6731. https://doi.org/10.1063/1.450675

    Article  Google Scholar 

  41. Abouaf, R. and Teillet-Billy, D., Fine structure in the dissociative attachment cross sections for HBr and HF, Chem. Phys. Lett., 1980, vol. 73, no. 1, pp. 106–109. https://doi.org/10.1016/0009-2614(80)85213-4

    Article  Google Scholar 

  42. Xu, Y., Gallup, G.A., and Fabrikant, I.I., Dissociative electron attachment to vibrationally and rotationally excited H2 and HF molecules, Phys. Rev. A, 2000, vol. 61, no. 5, pp. 52705–52706. https://doi.org/10.1103/PhysRevA.61.052705

    Article  Google Scholar 

  43. Chantry, P.J., A simple formula for diffusion calculations involving wall reflection and low density, J. Appl. Phys., 1987, vol. 62, no. 4, pp. 1141–1148. https://doi.org/10.1063/1.339662

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation grant no. 23-29-00771, https://rscf.ru/project/23-29-00771/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Miakonkikh.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miakonkikh, A.V., Kuzmenko, V.O., Efremov, A.M. et al. Parameters and Composition of Plasma in a CF4 + H2 + Ar Mixture: Effect of CF4/H2 Ratio. Russ Microelectron 53, 70–78 (2024). https://doi.org/10.1134/S1063739723600012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739723600012

Keywords:

Navigation