Skip to main content
Log in

Effects of the rock mass parameters on the dragline excavation performance

  • Geomechanics
  • Published:
Journal of Mining Science Aims and scope

Abstract

This paper investigates impacts of rock mass properties on dragline performance. Performances of two draglines operated in different rock formations in Tuncbilek Coal mines were analyzed using modified geological strengths index (GSI). Results showed that draglines’ performance change with the rock mass properties. Based on the available data, an empirical relationship was generated to estimate dragline production capacity. The estimated excavation amount by the proposed model was found to be consistent with the excavation amount obtained from the field data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deere, D.U. and Miller, R.P., Engineering Classifications and Index Properties of Intact Rock, Technical Report no. AFWL-TR 65-116, University of Illinois, 1966.

  2. Aufmuth, R.E., ASystematic Determination of Engineering Criteria for Rock, Bull. Assoc. Eng. Geol., 1973, vol. 11, pp. 235–245.

    Google Scholar 

  3. Kidybinski, A., Bursting Liability Indices of Coal, Int. J. Rock Mech. Min. Sci., Geomech. Abstr., 1984, vol. 21, pp. 39–42.

    Article  Google Scholar 

  4. Shorey, P.R., Barat, D., Das, M.N., Mukherjee, K.P., and Singh, B., Schmidt Hammer Rebound Data for Estimation of Large Scale In-Situ Coal Strength, Int. J. Rock Mech. Min. Sci., Geomech. Abstr., 1984, vol. 21, pp. 39–42.

    Article  Google Scholar 

  5. Haramy, K.Y. and De Marco, M.J., Use of Schmidt Hammer for Rock and Coal Testing, Proc. 26th US Symp. Rock Mechanics, Balkema, 1985.

  6. Ghose, A.K. and Chakraborti, S., Empirical Strength Indices of Indian Coals, Proc. 27th US Symp. Rock Mechanics, Balkema, 1986.

  7. Sachapazis, C.I., Correlating Schmidt Hardness with Compressive Strength and Young’s Modulus of Carbonate Rocks, Bull. Int. Assoc. Eng. Geol., 1990, vol. 42, pp. 75–83.

    Article  Google Scholar 

  8. Xu, G., Grasso, P., and Mahtab, A., Use of Schmidt Hammer for Estimating Mechanical Properties of Weak Rock, Proc. 6th Int. IAEG Congress, Balkema, 1990.

  9. Inoue, M. and Omi, M., Study on the Strength of Rocks by the Schmidt Test Hammer, Rock Mech. Japan, 1970, vol. 1.

  10. Carter, P.G. and Sneddon, M., Comparison of the Schmidt Hammer, Point Load and Unconfined Compression Test in Carboniferous Strata, Proc. Conf. Rock Engineering, 1977.

  11. Cargill, J.S. and Shakoor, A., Evaluation of Empirical Methods for Measuring the Uniaxial Strength of Rock, Int. J. Rock Mech. Min. Sci., Geomech. Abstr., 1990, vol. 27, pp. 495–503.

    Article  Google Scholar 

  12. Katz, O., Reches, Z., and Roegiers, J.C., Evaluation of Mechanical Rock Properties Using a Schmidt Hammer, Int. J. Rock Mech. Min. Sci., 2000, vol. 37.

  13. Day, M.J. and Goudie, A.S., Field Assessment of Rock Hardness Using the Schmidt Test Hammer, Br. Geomorphol. Res. Group Tech. Bull., 1977, vol. 18, pp. 19–29.

    Google Scholar 

  14. Matthews, J.A. and Shakesby, R.A., The Status of the Little Ice Age in Southern Norway: Relative-Age Dating of Neoglacial Moraines with Schmidt Hammer and Lichenometry, Boreas, 1984, vol. 13.

  15. Young, R.P. and Fowell, R.J., Assessing Rock Discontinuities, Tunnels Tunnelling, 1978, pp. 45–48.

  16. Kahraman, R., Rotary and Percussive Drilling Prediction Using Regression Analysis, Int. J. Rock Mech. Min. Sci., 1999, vol. 36, pp. 981–989.

    Article  Google Scholar 

  17. Kahraman, R., Balcı, C., Yazıcı, S., and Bilgin, N., Prediction of the Penetration Rate of Rotary Blast Hole Drills Using a New Drillability Index, Int. J. Rock Mech. Min. Sci., 2000, vol. 37, pp. 729–743.

    Article  Google Scholar 

  18. Kahraman, S., Bilgin, N., and Feridunoglu, C., Dominant Rock Properties Affecting the Penetration Rate of Percussive Drills, Int. J. Rock Mech. Min. Sci., 2003, vol. 40, pp. 711–723.

    Article  Google Scholar 

  19. Tarkoy, P.J. and Hendron, A.J., Rock Hardness Index Properties and Geotechnical Parameters for Predicting Tunnel Boring Machine Performance, National Science Foundation Report, 1975, no. NSF-RAT-75-030.

  20. Duncan, N., Engineering Geology and Rock Mechanics, vol. 1. London: Leonard Hill, 1969.

    Google Scholar 

  21. Janach, W. and Merminod, A., Rock Abrasivity Test with a Modified Schmidt Hammer, Int. J. Rock Mech. Min. Sci., Geomech. Abstr., 1982, vol. 19, pp. 43–45.

    Google Scholar 

  22. Karpuz, C., A Classification System for Excavation of Surface Coal Measures, Mining Science and Technology, 1990, vol. 11, pp. 157–163.

    Google Scholar 

  23. Singh, R., Singh, A.K., and Mandal, P.K., Cuttability of Coal Seams with Igneous Intrusions, Eng. Geo., 2002, vol. 67, pp. 127–137.

    Article  Google Scholar 

  24. Goktan, R.M. and Gunes, N.A., Comparative Study of Schmidt Hammer Testing Procedures with Reference to Rock Cutting Machine Performance Prediction, Int. J. Rock Mech. Min. Sci., 2005, vol. 42, pp. 466–472.

    Article  Google Scholar 

  25. Aksoy, C.O., Performance Prediction of Impact Hammers by Block Punch Index for Weak Rock Masses, Int. J. Rock Mech. Min. Sci., 2009, vol. 46, no. 8.

  26. Anon, Golden Automatic Buckets, Page Engineering Company, Chicago, USA, 1990.

  27. Anon, P&H Optima Plus Buckets and Dippers, P&H Mining Equipment, Milwaukee, USA, 2000.

  28. Steidle, E., Role of Draglines and Shovels in Modern Mining, 1976, Groundhog 77,(1), Ohio, USA.

  29. Blouin, S., Hemami, A., and Lipsett, M., Review of Resistive Force Models for Earthmoving Process, J. Aerospace Eng., 2001, vol. 14, no. 3, pp. 102–110.

    Article  Google Scholar 

  30. Osman, M.S., The Mechanics of Soil Cutting Blades, J. Agricult. Eng. Research, 1964, vol. 9, no. 4, pp. 313–328.

    Google Scholar 

  31. Özdoğan, M., Paşamehmetoğlu, A.G., Karpuz, C., Hindistan, M.A., and Bozdağ, T., Performance Monitoring on the Excavability of Dragline—A Case Study, Mine Planning and Equipment Selection, Singhal et al., Eds., Rotterdam: Balkema, 1995.

    Google Scholar 

  32. Saperstein, L.W. and Franklin, R.N., An Investigation into the Forces on Bodies Dragged Through Sand, Journal of Terramechanics, 1971, vol. 8, no. 2, pp. 29–37.

    Article  Google Scholar 

  33. Wilson, J. and Franklin, R.N., Further Measurements of Drag on Bodies Moving Through Sand, Journal of Terramechanics, 1971, vol. 8, no. 2, pp. 39–48.

    Article  Google Scholar 

  34. Makanga, J.T., Salokhe, V.M., and Gee-Clough, D., Effect of Tine Rake Angle and Aspect Ratio on Soil Failure Patterns in Dry Loam Soil, Journal of Terramechanics, 1996, vol. 33, no. 5, pp. 233–252.

    Article  Google Scholar 

  35. Makanga, J.T., Salokhe, V.M., and Gee-Clough, D., Effect of Tine Rake Angle and Aspect Ratio on Soil Failure Patterns in Dry Loam Soil, Journal of Terramechanics, 1997, vol. 34, no. 4, pp. 235–250.

    Article  Google Scholar 

  36. Takahashi, H., Hasegawa, M., and Nakano, E., Analysis of the Resistive Forces Acting on the Bucket of a Load-Haul-Dump Machine and a Wheel Loader in the Scooping Task, Advanced Robotics, VSP and Robotics Society of Japan, 1999, vol. 13, no. 2, pp. 97–114.

    Google Scholar 

  37. Tan, C., Zweiri, Y.H., Althoefer, K., and Seneviratne, L.D., On-Line Soil Property Estimation for Autonomous Excavator Vehicles, Proc. ICRA’ 03. IEEE Int. Conf. Robotics and Automation, 2003, vol. 1, pp. 121–126.

    Article  Google Scholar 

  38. Coulomb, C.A., Essai Sur Une Application des Règles des Maximis et Minimis à Quelques Problèmes de Statique Relatifs à l’Architecture, Mém. Acad. Roy. Preés. Diverse Savants, 1776, vol. 7.

  39. Chen, W.F. and Liu, X.L., Limit Analysis in Soil Mechanics, Amsterdam: Elsevier, 1990.

    Google Scholar 

  40. Aksoy, C.O., Minimizing the Economic Unit Cost of Dragline-Truck-Shovel Operation at Yatagan-Eskihisar Open Pit Mine, Turkey, CIM Bulletin, 2005, vol. 98, no. 1088, pp. 1–4.

    Google Scholar 

  41. Demirel, N., Dynamic Dragline Modeling and Boom Stress Analysis for Efficient Excavation, PhD Dissertation, Missouri University of Science and Technology, 2006.

  42. Paşamehmetoğlu, A.G., Karpuz, C., and Ceylanoğlu, A., Elektrikli Ekskavatörün Kazılabilirliğe Yönelik Performance Ölçümleri, Cumhuriyet Üniversitesi 1.Ulusal Jeoloji ve Madencilik Symp., 1988, no. 1, 13.

  43. Özdoğan, M., Dragline Yerkazarlarda Kepçe Saplanış Mekanizması ve Kuvveti, Madencilik Dergisi, 2003, vol. 42, no. 1, pp. 17–26.

    Google Scholar 

  44. Erdem, B., Çelebi, N., and Paşamehmetoğlu, A.G., An Expert System for Stripping Method and Dragline Selection, Mine Planning and Equipment Selection, Hennies, Ayres da Silva & Chaves, Eds., Rotterdam: Balkema, 1996.

    Google Scholar 

  45. Sonmez, H. and Ulusay, R., A Discussion on the Hoek-Brown Failure Criterion and Suggested Modifications to the Criterion Verified by Slope Stability Case Studies, Yerbilimleri, 2002, vol. 26, pp. 77–79.

    Google Scholar 

  46. Hoek, E, Kaiser, K., and Bawden, W.F., Support of Underground Excavations in Hard Rock, Rotterdam: Balkema, 1995.

    Google Scholar 

  47. Hoek, E. and Brown, E.T., Practical Estimates of Rock Mass Strength, Int. J. Rock Mech. and Min. Sci., 1998, vol. 34, no. 8, pp. 1165–1186.

    Article  Google Scholar 

  48. Hoek, E., Marinos, P., and Benissi, M., Applicability of the Geological Strength Index (GSI) Classification for Very Weak and Sheared Rock Masses: The Case of Athens Schist Formation, Bull. Engineering Geology and Environment, 1998, vol. 57.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Demirel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demirel, N. Effects of the rock mass parameters on the dragline excavation performance. J Min Sci 47, 441–449 (2011). https://doi.org/10.1134/S106273914704006X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106273914704006X

Keywords

Navigation