Skip to main content
Log in

Potassium Butyl Xanthate Adsorption at Galena and Chalcopyrite by the Atomic Force Microscopy and Spectroscopy Data

  • MINERAL DRESSING
  • Published:
Journal of Mining Science Aims and scope

Abstract

Potassium butyl xanthate adsorption at galena and chalcopyrite is characterized using the methods of atomic force microscopy and spectroscopy. It is found that layers generated on galena and chalcopyrite surface as a result of agitation in distilled water and interaction with potassium butyl xanthate solution have cardinally different morphology. Observations over adsorption of the reagent in liquid phase reveal different mechanisms of the reagent coating growth on these minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Ignatkina, V.A., Bocharov, V.A., and Kayumov, A.A., Basic Principles of Selecting Separation Methods for Sulfide Minerals Having Similar Properties in Complex Ore Concentrates, J. Min. Sci., 2016, vol. 52, no. 2, pp. 360–372.

    Article  Google Scholar 

  2. Smart, R.S., Amarantidis, J., Skinner, W.M., Prestidge, C.A., La Vanier, L., and Grano, S.R. Surface Analytical Studies of Oxidation and Collector Adsorption in Sulfide Mineral Flotation, In Solid-liquid Interfaces: Macroscopic Phenomena-Microscopic Understanding, Appl. Phys., 2003, vol. 85, pp. 3–62.

    Article  Google Scholar 

  3. Kim, B.S., Hayes, R.A., Prestidge, C.A., Ralston, J., and Smart, R.St.C., Scanning Tunneling Microscopy Studies of Galena: The Mechanism of Oxidation in Air, Appl. Surf. Sci., 1994, vol. 78, pp. 385–397.

    Article  Google Scholar 

  4. Zhang, J. and Zhang, W., Applying an Atomic Force Microscopy in the Study of Mineral Flotation, In Microscopy: Sci., Technol., Application and Education, 2010, vol. 3, pp. 2028–2034.

    Google Scholar 

  5. Mikhlin, Y.L., Karacharov, A.A., and Likhatski, M.N., Effect of Adsorption of Butyl Xanthate on Galena, PbS, and HOPG Surfaces as Studied by Atomic Force Microscopy and Spectroscopy and XPS, Int. J. Miner. Proc., 2015, vol. 144, pp. 81–89.

    Article  Google Scholar 

  6. Han, C., Wei, D., Gao, Sh., Zai, Q., Shen, Ya., and Liu, W., Adsorption and Desorption of Butyl Xanthate on Chalcopyrite, J. Mater. Res. and Technol., 2020, vol. 9, iss. 6, pp. 12654–12660.

    Article  Google Scholar 

  7. Chanturia, V.A., Brylyakov, Yu.E., Koporulina, E.V., Ryazantseva, M.V., Bunin, I.Zh., Khabarova, I.A., and Krasnov, A.N., Up-to-Date Approaches to Studying Adsorption of Fatty-Acid Collecting Agents at Apatite and Shtaffelite Ore Minerals, J. Min. Sci., 2014, vol. 50, no. 4, pp. 768–779.

    Article  Google Scholar 

  8. Ducker, W.A. and Senden, T.J., Measurements of Forces in Liquids Using a Force Microscopy, Langmur, 1992, vol. 8, pp. 1831–1836.

    Article  Google Scholar 

  9. Fa, K., Jiang, T., Nalaskowski, J., and Miller, J.D., Interaction Forces between a Calcium Dioleate Sphere and Calcite/Fluorite Surfaces and their Significance in Flotation, Langmuir, 2003, vol. 19, pp. 10523–10530.

    Article  Google Scholar 

  10. Lyles, V., Serem, W., Yu, J., and Garno, J., Surface Characterization Using Atomic Force Microscopy (AFM) in Liquid Environments, Springer Series in Surface Sci., 2013, vol. 51, no. 1, pp. 599–620.

    Article  Google Scholar 

  11. Koporulina, E.V., Ryazantseva, M.V., Chanturia, E.L., and Zhuravleva, E.S., Adsorption of Butyl Xanthate on the Surface of Sulfide Minerals under Conditions of their Preliminary Treatment with Water Electrolysis Products according to the Data of AFM and IR-Spectroscopy, Surface: X-ray, Synchrotron and Neutron Studies, 2018, no. 9, pp. 49–59.

  12. Mikhlin, Y.L., Romanchenko, A.S., and Shagaev, A.A., Scanning Probe Microscopy Studies of PbS Surfaces Oxidized in Air and Etched in Aqueous Acid Solutions, Appl. Surf. Sci., 2006, vol. 252, pp. 5645–5658.

    Article  Google Scholar 

  13. De Giudici, G. and Zuddas, P., In Situ Investigation of Galena Dissolution in Oxygen Saturated Solution: Evolution of Surface Features and Kinetic Rate, Geochimica et Cosmochimica Acta, 2001, vol. 65, pp. 1381–1389.

    Article  Google Scholar 

  14. Wittstock, G., Kartio, I., Hirsch, D., Kunze, S., and Szargan, R., Oxidation of Galena in Acetate Buffer Investigated by Atomic Force Microscopy and Photoelectron Spectroscopy, Langmuir, 1996, vol. 12, pp. 5709–5721.

    Article  Google Scholar 

  15. Kim, B.S., Hayes, R.A., Prestige, C.A., Ralston, J., and Smart, R.St.C., Scanning Tunneling Microscopy Studies of Galena: The Mechanism of Oxidation in Air, Appl. Surf. Sci., 1994, vol. 78, pp. 385–397.

    Article  Google Scholar 

  16. Rosso, K.M. and Vaughan, D.J., Reactivity of Sulfide Mineral Surfaces, Rev. Mineral. and Geochem., 2006, vol. 61, pp. 557–607.

    Article  Google Scholar 

  17. Chanturia, V.A. and Kondratiev, S.A., Contemporary Understanding and Developments in the Flotation Theory of Non-Ferrous Ores, Miner. Proc. and Extractive Metal. Rev., 2019, vol. 40, no. 6, pp. 390–401.

    Article  Google Scholar 

  18. Temkina, N.V., Filonov, A.S., and Yaminsky, I.V., Force Spectroscopy of Single Macromolecules and their Complexes Using AFM, Nanoindustriya, 2007, no. 6, pp. 26–29.

  19. Safenkova, I.V., Zherdev, A.V., and Dzantiev, B.B., The Use of Atomic Force Microscopy to Characterize Single Intermolecular Interactions by Atomic Force Microscopy Method, Uspekhi biol. khimii, 2012, vol. 52, pp. 281–314.

  20. Lebedev, D.V., Chuklanov, A.P., Bukharaev, A.A., and Druzhinina, O.S., Measurement of Young’s Modulus of Biological Objects in Liquid Medium Using a Special Probe of Atomic Force Microscope, Pis’ma v ZhTF, 2009, vol. 35, iss. 8, pp. 54–61.

  21. Laajalehto, K., Smart, R.S.C., Ralston, J., and Suoninen, E., STM and XPS Investigations of Reactions of Galena in Air, Appl. Surf. Sci., 1993, vol. 64, pp. 29–39.

    Article  Google Scholar 

  22. Buckley, A.N. and Woods, R., An X-Ray Photoelectron Spectroscopic Study of the Oxidation of Galena, Appl. Surf. Sci., 1984, vol. 17, no. 4, pp. 401–414.

    Article  Google Scholar 

  23. Plaksin, I.N. and Shafeev, R.Sh., Influence of Some Semiconducting Properties of the Surface on the Interaction of Xanthate with Galena, DAN SSSR, Ser. Fiz. Khimiya, 1960, vol. 132, no. 2, pp. 399–401.

    Google Scholar 

  24. Plaksin, I.N., Shafeev, R.Sh., and Chanturia, V.A., Vliyanie geterogennosti poverkhnosti mineralov na vzaimodeistvie s flotatsionnymi reagentami (Influence of Mineral Surface Heterogeneity on Interaction with Flotation Reagents), Moscow: Nauka, 1965.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Koporulina.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2021, No. 3, pp. 121-132. https://doi.org/10.15372/FTPRPI20210312.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chanturia, V.A., Koporulina, E.V. & Ryazantseva, M.V. Potassium Butyl Xanthate Adsorption at Galena and Chalcopyrite by the Atomic Force Microscopy and Spectroscopy Data. J Min Sci 57, 469–479 (2021). https://doi.org/10.1134/S1062739121030121

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739121030121

Keywords

Navigation