Skip to main content
Log in

Global Prospects for Transition to Green Energy Generation in Saratov Oblast

  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The global prospects for the transition to green energy generation in Saratov oblast are discussed. The literature data on the current situation in the alternative energy sector (wind energy, solar energy, and bioenergy) in Saratov oblast have been studied and systematized. The data were obtained from the most relevant and cited publications in the world databases: Scopus, Google Scholar, and the Russian Science Citation Index (RSCI) and from Internet media articles. The pros and cons, as well as the overall impact of each type of renewable energy available in Saratov oblast on the environment, are described. Much attention is paid to the impact of wind turbines and solar power plants on the environment. It has been established that the use of solar energy is most developed in this area. This is determined by climate conditions and the number of sunny days in the region. In view of the large formation of organic wastes in Saratov oblast, it is rational to use biomass to produce bioenergy. The government of Saratov oblast plans a further consistent increase in the proportion of renewable energy sources in the energy balance of the region. The proportion of renewable energy sources in the regional energy balance will reach 6% by 2035 and about 13% in 2050. We believe that the global prospects for green energy transitions in the Russian Federation, including Saratov oblast, consist in a partial transition to alternative energy (solar and wind energy) using bioenergy and highly efficient technologies for cleaning CO2 emissions from conventional fuel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Alves, D.P., Bobba, S., Carrara, S., and Plazzotta, B., The Role of Rare Earth Elements in Wind Energy and Electric Mobility, Luxembourg: European Union, 2020. https://doi.org/10.2760/303258

  2. Bakirov, S.M., Eliseev, S.S., and Gurinov, I.A., Analysis of factors affecting the conversion of solar energy into electrical energy in the Saratov region, in Aktual’nye problemy energetiki APK: materialy XI natsional’noi nauchno-prakticheskoi konferentsii s mezhdunarodnym uchastiem (Actual Problems of Energy of Agroindustrial Complex. Proc. XI Natl. Sci.-Pract. Conf. with International Participation), Trushkin, V.A., Ed., Saratov: Sarat. Gos. Agrarn. Univ., 2020, pp. 8–11.

  3. Berezkin, M.Yu., Borzenko, V.I., Degtyarev, K.S., Zalikhanov, A.M., Zamolodchikov, D.G., Larin, N.V., Lukashov, A.A., Nefedova, L.V., Nigmatulin, R.I., Sinyugin, O.A., Solovyev, D.A., Strebkov, D.S., Syvorotkin, V.L., and Fedorov, V.M., Istochniki energii, klimat i energetichesky perekhod (Energy Sources, Climate, and Energy Transition), Moscow: Energiya, 2023. https://doi.org/10.5281/zenodo.7919418

  4. Bogomolov, P.L., Feoktistova, N.Yu., Kropotkina, M.V., and Surov, A.V., Use of Internet resources to estimate the abundance of species in contact with humans (using the common hamster (Cricetus cricetus L., 1758, Cricetidae, Rodentia) as an example), Biol. Bull. (Moscow), 2022, vol. 49, no. 10, pp. 1872–1877. https://doi.org/10.1134/S1062359022100077

    Article  Google Scholar 

  5. Cooper, L.M. and Sheate, W.R., Cumulative effects assessment: a review of UK environmental impact statements, Environ. Impact Assess. Rev., 2002, vol. 22, no. 4, pp. 415–439. https://doi.org/10.1016/S0195-9255(02)00010-0

    Article  Google Scholar 

  6. Dergachev Solar Power Plant—completed, 2022. https://dzen.ru/a/Yu2awJdL3FtLv8UY. Accessed April 23, 2023.

  7. Doklad o sostoianii i ob okhrane okruzhaiushchei sredy Saratovskoi oblasti v 2021 godu (Report on the State and Environmental Protection of the Saratov Region in 2021), Saratov: Min. Prir. Resur. Ekol. Sarat. Obl., 2022.

  8. Douglas, D.J.T., Waldinger, J., Buckmire, Z., Gibb, K., Medina, J.P., Sutcliffe, L., Beckmann, C., Collar, N.J., Jansen, R., Kamp, J., Little, I., Sheldon, R., Yanosky, A., and Koper, N., A global review identifies agriculture as the main threat to declining grassland birds, Ibis, 2023, vol. 163. https://doi.org/10.1111/ibi.13223

  9. IEA 2021, Net Zero by 2050: A Roadmap for the Global Energy Sector IEA, Paris, 2021. https://www.iea.org/reports/net-zero-by-2050. Accessed March 3, 2023.

  10. IEA 2022, Bioenergy. Paris, 2022. https://www.iea.org/reports/bioenergy. Accessed March 3, 2023.

  11. Eloeva, R.K. and Essenov, I.Kh., Perspectives of energy alternative sources use in agriculture, Izv. Gorsk. Gos. Agrarn. Univ., 2014, vol. 51, no. 3, pp. 193–196.

    Google Scholar 

  12. Gabitov, I.A. and Egorov, V.V., Environmental safety in the use of renewable energy sources, in Sovremennye problemy energetiki i puti ikh resheniia: materialy VI Vserossiiskoi nauchnotekhnicheskoi konferentsii (Modern Energy Problems and Ways of Their Solution. Proc. VI All-Russia Sci.-Techn. Conf.), Makhachkala: Dagestan. Gos. Tech. Univ., 2021, pp. 93–97.

  13. Gielen, D. and Lyons, M., Critical Materials for the Energy Transition: Rare Earth Elements, Abu Dhabi: Int. Renewable Energy Agency, 2022.

    Google Scholar 

  14. Govorushko, S.M., Wind power stations impact on the environment, Al’tern. Energ. Ekol., 2011, no. 4, pp. 38–42.

  15. Hulka, S., McLoud, D., and Larsen, J.K., Assessing collision risk in white-tailed eagles using laser range-finder technology, Pernatye Khishchn. Ikh Okhr., 2013, no. 27, pp. 248–252.

  16. Investor interest in RES in Russia remains, Russia Renewable Energy Development Association, Moscow, 2022. https://rreda.ru/information-bulletin-july2022. Accessed March 3, 2023.

  17. Investors have invested more than 8 billion rubles in green energy projects in the Saratov oblast, TASS News Agency, 2023. https://tass.ru/ekonomika/18001129. Accessed April 23, 2023.

  18. Kadyrmyatov, Y.R. and Philippova, F.M., The impact of wind power plants on the environment, in Ekologicheskaya bezopasnost’ v tekhnosfernom prostranstve: sbornik materialov Pyatoi mezhdunarodnoi nauchno-prakticheskoi konferentsii prepodavatelei, molodykh uchenykh i studentov (Ecological Safety in Technosphere Space: Collection of Materials of the Fifth International Scientific and Practical Conference of Teachers, Young Scientists and Students), Yekaterinburg: Ross. Gos. Prof. Pedagog. Univ., 2022, pp. 187–189.

  19. Khalid, M.Y., Arif, Z.U., Hossain, M., and Umer, R., Recycling of wind turbine blade through modern recycling technologies: road to zero waste, Renewable Energy Focus, 2023, vol. 44, pp. 373–389. https://doi.org/10.1016/j.ref.2023.02.001

    Article  Google Scholar 

  20. Korolkov, M.A. and Borodin, O.V., The first Russian experience in ornithological monitoring on the territory of a modern megawatt-class wind power station, in Buturlinskii sbornik: materialy VI mezhdunarodnykh Buturlinskikh ch-tenii (Buturlin Collection of Papers: Proc. VI Int. Buturlin Readings), Izhevsk: OOO Print, 2019, pp. 167–179.

  21. Krasnaya kniga Rossiskoi Federatsii. Zhivotnye (Red Data Book of the Russian Federation. Animals), Moscow: VNII Ekologiya, 2021, 2nd ed.

  22. Liu, P., Meng, F., and Barlow, C.Y., Wind turbine blade end-of-life options: An economic comparison, Resour., Conserv. Recycling, 2022, vol. 180, p. 106202. https://doi.org/10.1016/j.resconrec.2022.106202

    Article  Google Scholar 

  23. Mamaev, A.B., Oparin, M.L., and Oparina, O.S., Features of the population dynamics of larks (Alaudidae, Aves) in the semi-desert zone of the Saratov Trans-Volga region, Povolzh. Ekol. Zh., 2022, no. 3, pp. 307–321. https://doi.org/10.35885/1684-7318-2022-3-307-321

  24. Miller, T.A., Brooks, R.P., Lanzone, M., Brandes, D., Cooper, J., O’Malley, K., Maisonneuve, C., Tremblay, J., Duerr, A., and Katzner, T., Assessing risk to birds from industrial wind energy development via paired resource selection models, Conserv. Biol., 2014, vol. 28, no. 3, pp. 745–755. https://doi.org/10.1111/cobi.12227

    Article  PubMed  Google Scholar 

  25. Morinha, F., Travassos, P., Seixas, F., Martins, A., Bastos, R., Carvalho, D., Magalhaes, P., Santos, M., Bastos, E., and Cabral, J., Differential mortality of birds killed at wind farms in Northern Portugal, Bird Study, 2014, vol. 61, no. 2, pp. 255–259. https://doi.org/10.1080/00063657.2014.883357

    Article  Google Scholar 

  26. Nevzorova, T. and Kutcherov, V., Barriers to the wider implementation of biogas as a source of energy: a state-of-the-art review, Energy Strategy Rev., 2019, vol. 26, p. 100414. https://doi.org/10.1016/j.esr.2019.100414

    Article  Google Scholar 

  27. Neishtadt, Y.A. and Chervyakov, M.Yu., Satellite monitoring of solar radiation flux for the development of solar energy in the Saratov oblast, in Fundamental’nye i prikladnye kosmicheskie issledovaniya: materialy XIX konferentsii molodykh uchenykh (Fundamental and Applied Space Researches. Proc. XIX Young Scientists Conference), Moscow: Inst. Kosm. Issled. Ross. Akad. Nauk, 2022, pp. 84–91. https://doi.org/10.21046/KMU-2022-84-91

  28. Novouzenskaya solnechnaya elektrostantsiya. Pervaya SES na geterostrukturnykh modulyakh v Saratovskoi oblasti (Novouzen Solar Power Plant. The First SPP on Heterostructure Modules in the Saratov Oblast), St. Petersburg: HEVEL, 2020. https://spb.hevelsolar.com/projects/novouzenskayasolnechnaya-elektrostanciya/. Accessed May 11, 2023.

  29. Oparin, M.L., Mamaev, A.B., Oparina, O.S., and Trofimova, L.S., Analysis of the long-term dynamics of the lark population (Alaudidae, Aves) in the semi-desert in the northwestern Caspian Lowland, Biol. Bull. (Moscow), 2021, vol. 48, no. 19, pp. 1972–1979. https://doi.org/10.1134/S1062359021100332

    Article  Google Scholar 

  30. Oparina, O.S., Oparin, M.L., Kudryavtsev, A.Yu., and Oparina, A.M., Characteristics of great bustard (Otis tarda) (Otididae, Aves) habitats in the trans-volga region according to food availability during the chick rearing period, Biol. Bull. (Moscow), 2022, vol. 49, no. 10, pp. 1898–1922. https://doi.org/10.1134/S1062359022100272

    Article  Google Scholar 

  31. Otraslevoi obzor. 370 krupneishikh investitsionnykh proektov stroitel’stva agrokompleksov i pishchevykh proizvodstv RF. Proekty 2020–2023 godov (Industry Overview. 370 Largest Investment Projects for the Construction of Agro-complexes and Food Production Facilities in the Russian Federation. Projects of 2020–2023), St. Petersburg: INFOline, 2020. https://infoline.spb.ru/upload/iblock/0e0/0e0b-98b2f7b140edaf60f1636df390a9.pdf. Accessed May 3, 2023.

  32. Pearce-Higgins, J.W., Stephen, L., Langston, R.H.W., and Bainbridge, I.P., and Bullman, R., The distribution of breeding birds around upland wind farms, J. Appl. Ecol., 2009, vol. 46, no. 6, pp. 1323–1331. https://doi.org/10.1111/j.1365-2664.2009.01715.x

    Article  Google Scholar 

  33. Perez-Garcia, J.M., Carrete, M., Arrondo, E., Cortes-Avizanda, A., de la Riva, M., Sanchez-Zapata, J.A., and Donazar, J.A., Use of innovative telemetry methods to asses interactions between wind farms and wildlife, Pernatye Khishchniki Ikh Okhr., 2018, suppl. 1, pp. 192–194.

  34. PhosAgro launches a project to use renewable energy sources at production and social facilities, PhosAgro, Moscow, 2020. https://www.phosagro.ru/press/industry/fosagro- zapustila-proekt-po-ispolzovaniyu-vozobnovlyaemykh-istochnikov-energii-na-proizvodstvennykh-/. Accessed March 3, 2023.

  35. REN21. Renewables 2022 Global Status Report, 2022. https://www.ren21.net/gsr- 2022/. Accessed March 3, 2023.

  36. Resolution of the Government of the Russian Federation dated May 28, 2013, no. 449 “On the Mechanism for Stimulating the Use of Renewable Energy Sources in the Wholesale Electricity and Capacity Market.” https://base.garant.ru/70388616. Accessed April 23, 2023.

  37. Saidur, R., Rahim, N.A., Islam, M.R., and Solangi, K.H., Environmental impact of wind energy, Renewable Sustainable Energy Rev., 2011, vol. 15, no. 5, pp. 2423–2430. https://doi.org/10.1016/j.rser.2011.02.024

    Article  Google Scholar 

  38. Saratov oblast has chosen a green course, Russia Renewable Energy Development Association, Moscow, 2022. https://rreda.ru/novosti/tpost/goiobrmpy1-saratovskaya-oblastvibrala-zelenii-kurs. Accessed May 3, 2023.

  39. Scheme of Territorial Planning of the Russian Federation in the Field of Energy (Approved by the Order of the Government of the Russian Federation dated August 1, 2016, no. 1634-r), 2016. http://gov.garant.ru/SESSION/PILOT/ main.htm. Accessed May 5, 2023.

  40. Shkodina, O.N., Environmental condition of the Saratov oblast, in Aktual’nye problemy prirodopol’zovaniya i prirodoobustroistva: sbornik statei II mezhdunarodnoi nauchno-prakticheskoi konferentsii (Actual Problems of Nature Management and Environmental Management: Proc. II Int. Sci.-Pract. Conf.), Penza: Penzensk. Gos. Agrarn. Univ., 2019, pp. 283–286.

  41. Shyurova, N.A., Dubrovin, V.V., Narushev, V.B., Kozhevnikov, A.A., and Milovanov, I.V., Biofuel as an alternative energy source for the automobile industry: the experience of the Lower Volga region (Russia), J. Ecol. Eng., 2020, vol. 21, no. 6, pp. 29–35. https://doi.org/10.12911/22998993/123164

    Article  Google Scholar 

  42. Sokolov, A.A. and Rudneva, O.S., Prospects of alternative energy development in the regions of the Russian steppe zone, Vestn. Chelyabinsk. Gos. Univ., 2020, no. 6, pp. 49–55. https://doi.org/10.47475/1994-2796-2020-10606

  43. Timofeev, M.N. and Timofeev, A.N., Using a system approach to select a structure of a hybrid electric power station on the example of the Saratov region, XXI Vek: Itogi Proshlogo Probl. Nastoyashch. Plyus, 2018, vol. 7, no. 4, pp. 61–66.

    Google Scholar 

  44. Turney, D. and Fthenakis, V., Environmental impacts from the installation and operation of large-scale solar power plants, Renewable Sustainable Energy Rev., 2011, vol. 15, no. 6, pp. 3261–3270. https://doi.org/10.1016/j.rser.2011.04.023

    Article  Google Scholar 

  45. Viktorovich, N.V. and Sedliska, K., Barriers on the way of development of wind power, Myths and real threat, Vestn. Brest. Gos. Techn. Univ., 2014, no. 2, pp. 96–99.

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation as part of the project “Technological Challenges and Social and Economic Transformations in the Context of Green Transitions” (Agreement no. 075-15-2022-1136 dated July 1, 2022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. M. Oparina, N. A. Politaeva or I. V. Illin.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by D. Zabolotny

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oparina, A.M., Politaeva, N.A. & Illin, I.V. Global Prospects for Transition to Green Energy Generation in Saratov Oblast. Biol Bull Russ Acad Sci 50, 2825–2832 (2023). https://doi.org/10.1134/S1062359023100370

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359023100370

Navigation