Skip to main content
Log in

Antioxidants in the Vitreous Body of the Eye of Human Fetuses

  • DEVELOPMENTAL BIOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Using the method of laser photolysis, we demonstrated the presence of electron-donor antioxidants and determined their total content (not less than 700–1000 µmol/L) in the vitreous body of the human eye in early prenatal development. In the vitreous body, the concentration of uric acid was determined and the presence of catecholamines (dopamine, noradrenaline, and adrenaline), antioxidants with electron-donor properties, was shown. The content of antioxidants in the system of the developing eye, which ensures its redox status, is an important index for assessing the normal state and pathology of the eye and is essential for predicting and interpreting eye diseases in newborns and finding effective approaches to their treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Álvarez -Lario, B. and Macarrón-Vicente, J., Uric acid and evolution, Rheumatology (Oxford), 2010, vol. 49, pp. 2010–2015.

    Article  Google Scholar 

  2. Ames, B.N., Cathcart, R., Schwiers, E., and Hochstein, P., Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis, Proc. Natl. Acad. Sci. U. S. A., 1981, vol. 78, pp. 6858–6862.

    Article  CAS  Google Scholar 

  3. Ankamah, E., Sebag, J., Ng, E., and Nolan, J.M., Vitreous antioxidants, degeneration, and vitreo-retinopathy: exploring the links, Antioxidants, 2020, vol. 9, p. 7.

    Article  Google Scholar 

  4. Cardoso, D.R., Franco, D.W., Olsen, K., Andersen, M.L., and Skibsted, L.H., Reactivity of bovine whey proteins, peptides, and amino acids toward triplet riboflavin as studied by laser flash photolysis, J. Agric. Food Chem., 2004, vol. 52, pp. 6602–6606.

    Article  CAS  Google Scholar 

  5. Cardoso, D.R., Homem-de-Mello, P., Olsen, K., da Silva, A.B.F., Franco, D.W., and Skibsted, L.H., Deactivation of triplet-excited riboflavin by purine derivatives: important role of uric acid in light-induced oxidation of milk sensitized by riboflavin, J. Agric. Food Chem., 2005, vol. 53, pp. 3679–3684.

    Article  CAS  Google Scholar 

  6. Cardoso, D.R., Olsen, K., and Skibsted, L.H., Mechanism of deactivation of triplet-excited riboflavin by ascorbate, carotenoids, and tocopherols in homogeneous and heterogeneous aqueous food model systems, J. Agric. Food Chem., 2007, vol. 55, pp. 6285–6291.

    Article  CAS  Google Scholar 

  7. Cardoso, D.R., Libardia, S.H., and Skibsted, L.H., Riboflavin as a photosensitizer. effects on human health and food quality, Food Funct., 2012, vol. 3, pp. 487–502.

    Article  CAS  Google Scholar 

  8. Eisenhofer, G., Kopin, I.J., and Goldstein, D.S., Catecholamine metabolism: a contemporary view with implications for physiology and medicine, Pharmacol. Rev., 2004, vol. 56, pp. 331–349.

    Article  CAS  Google Scholar 

  9. Le Goff, M.M. and Bishop, P.N., Adult vitreous structure and postnatal changes, Eye (London), 2008, vol. 22, pp. 1214–1222.

    Article  CAS  Google Scholar 

  10. Hervet, T., Teresinski, G., Hejna, P., Descloux, E., Grouzmann, E., and Palmiere, C., Catecholamines and their o-methylated metabolites in vitreous humor in hypothermia cases, Forensic Sci. Med. Pathol., 2016, vol. 12, pp. 163–169.

    Article  CAS  Google Scholar 

  11. Hodjiconstaintinou, M. and Neff, N.H., Catecholamine system of retina: a model for studying synaptic mechanisms, Life Sci., 1984, vol. 35, pp. 1135–1147.

    Article  Google Scholar 

  12. Kałuzny, J.J. and Raukuć, D., Uric acid level in human aqueous and vitreous humor, Klin. Oczna, 1996, vol. 98, pp. 267–270.

    PubMed  Google Scholar 

  13. Katargina, L.A., Osipova, N.A., Panova, A.Yu., Bondarenko, N.S., Nikishina, Yu.O., Murtazina, A.R., and Ugryumov, M.V., Study of the pathogenetic role of catecholamines in the development of retinopathy of premature neonates on an experimental model of the disease, Ross. Oftal’mol. Zh., 2019, vol. 12, no. 4, pp. 64–69.

    Google Scholar 

  14. Levin, P.P., Sul’timova, N.B., and Chaikovskaya, O.N., Kinetics of fast reactions of triplet states and radicals under photolysis of 4,4'-dimethylbenzophenone in the presence of 4-halophenols in micellar solutions of sodium dodecyl sulfate in magnetic field, Russ. Chem. Bull., 2005, vol. 54, pp. 1433–1438.

    Article  CAS  Google Scholar 

  15. Liu, K-M., Swann, D., Lee, P., and Lam, K-W., Inhibition of oxidative degradation of hyaluronic acid by uric acid, Curr. Eye Res., 1984, vol. 3, pp. 1049–1053.

    Article  CAS  Google Scholar 

  16. Maksimova, E.M., Retinal neurotransmitters and rearrangements in the retinal nerve layers during photoreceptor degeneration, Sens. Sist., 2008, vol. 22, no. 1, pp. 36–51.

    Google Scholar 

  17. Mann, I., The Development of the Human Eye, London: Brit. Med. Assoc., 1949.

    Google Scholar 

  18. Panova, I.G. and Tatikolov, A.S., Investigation of the content of alpha-fetoprotein and serum albumin in the vitreous body of the eye of human embryos, Biol. Bull. (Moscow), 2011, vol. 38, pp. 191–194.

    Article  CAS  Google Scholar 

  19. Panova, I.G., Sharova, N.P., Dmitrieva, S.B., Levin, P.P., and Tatikolov, A.S., Characterization of the composition of the aqueous humor and the vitreous body of the eye of the frog Rana temporaria L., Comp. Biochem. Physiol., 2008, vol. 151, pp. 676–681.

    Article  Google Scholar 

  20. Panova, I.G., Yakovleva, M.A., Tatikolov, A.S., Kononikhin, A.S., Feldman, T.B., Poltavtseva, R.A., Nikolaev, E.N., Sukhikh, G.T., and Ostrovsky, M.A., Lutein and its oxidized forms in eye structures throughout prenatal human development, Exp. Eye Res., 2017, vol. 160, pp. 31–37.

    Article  CAS  Google Scholar 

  21. Panova, I.G., Sukhova, Yu.V., Tatikolov, A.S., and Ivanets, T.Yu., Bilirubin in the vitreous body of the eye of human fetuses, Bull. Exp. Biol. Med., 2020, vol. 170, no. 7, pp. 98–100.

    Article  CAS  Google Scholar 

  22. Sen, A., Roy, R., and Mukherjee, K.L., Ascorbic acid concentration in developing human fetal vitreous humor, Indian J. Ophthalmol., 1983, vol. 31, no. 2, pp. 73–74.

    CAS  PubMed  Google Scholar 

  23. Shi, Y., Evans, J.E., and Rock, K.L., Molecular identification of a danger signal that alerts the immune system to dying cells, Nature, 2003, vol. 425, pp. 516–521.

    Article  CAS  Google Scholar 

  24. Shilov, G.N. and Ivanyutin, V.A., Antioxidant activity of catecholamines as one of the components in their antistress effect, Obz. Klin. Farmakol. Lekarstv. Ter., 2014, vol. 12, no. 2, pp. 43–46.

    Article  Google Scholar 

  25. Shimizu, T., Nakanishi, Y., Nakahara, M., Wada, N., Morooka, Y., Hirano, T., Konishi, T., and Matsugo, S., Structure effect on antioxidant activity of catecholamines toward singlet oxygen and other reactive oxygen species in vitro, J. Clin. Biochem. Nutr., 2010, vol. 47, pp. 181–190.

    Article  CAS  Google Scholar 

  26. Sies, H., Berndt, C., and Jones, D.P., Oxidative stress, Annu. Rev. Biochem., 2017, vol. 86, pp. 715–748.

    Article  CAS  Google Scholar 

  27. Tovchiga, O.V. and Shtrygol, S.Yu., Uric acid and central nervous system functioning (a literature review), Biol. Bull. Rev., 2014, vol. 4, pp. 210–221.

    Article  Google Scholar 

  28. Webb, R., Jeffries, M., and Sawalha, A.H., Uric acid directly promotes human t-cell activation, Am. J. Med. Sci., 2009, vol. 337, pp. 23–27.

    Article  Google Scholar 

  29. Yakovleva, M.A., Panova, I.G., Feldman, T.B., Zak, P.P., Tatikolov, A.S., Sukhikh, G.T., and Ostrovsky, M.A., Finding of carotenoids in the vitreous body of human eye during prenatal development, Russ. J. Dev. Biol., 2007, vol. 38, pp. 317–321.

    Article  CAS  Google Scholar 

  30. Yang, Z., Xiaohua, W., Lei, J., Ruoyun, T., Mingxia, X., Weichun, H., Li, F., Ping, W., and Junwei, Y., Uric acid increases fibronectin synthesis through upregulation of lysyl oxidase expression in rat renal tubular epithelial cells, Am. J. Physiol. Renal. Physiol., 2010, vol. 299, pp. 336–346.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to R.A. Poltavtseva (Kulakov Research Center for Obstetrics, Gynecology, and Perinatology) and M. D. Chibireva (Koltzov Institute of Developmental Biology, Russian Academy of Sciences) for their assistance in this work.

Funding

The work by I.G. Panova was performed under a State Assignment of the Koltzov Institute of Developmental Biology, Russian Academy of Sciences, for 2021 (project no. 0088-2021-0017), and the work by A.S. Tatikolov and P.P. Levin was performed under a State Assignment of the Emanuel Institute of Biochemical Physics, Russian Academy of Sciences (project no. 001201253314).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Panova.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All protocols for handling human material from autopsy were approved by the Bioethics Commission of the Koltzov Institute of Developmental Biology, Russian Academy of Sciences.

Additional information

Translated by M. Batrukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panova, I.G., Sukhova, Y.V., Tatikolov, A.S. et al. Antioxidants in the Vitreous Body of the Eye of Human Fetuses. Biol Bull Russ Acad Sci 48, 662–666 (2021). https://doi.org/10.1134/S1062359021050113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359021050113

Navigation