Skip to main content
Log in

Development of Methods for Sample Preparation and Introduction into Excitation and Ionization Sources for Combined Procedures of Atomic Emission and Mass Spectral Analysis

  • REVIEWS
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Inductively coupled plasma atomic emission spectrometry (ICP-AES), two-jet arc plasma atomic emission spectrometry (TJP-AES), and inductively coupled plasma mass spectrometry (ICP-MS) are among the most informative methods for the quantitative chemical analysis (QCA) of high-purity substances and functional materials, both in the set of analytes and in their limits of detection (LODs). At the same time, the analytical capabilities of QCA methods in their standard version are not always sufficient for determining analytes at a level of 10−9−10−7% (ppb and ppt). The use of combined (including the stage of the preconcentration of trace elements) QCA procedures and alternative methods of sample introduction into ICP, which increase the efficiency of using trace element concentrates, makes it possible to reduce the instrumental LODs for analytes by 1–2 orders of magnitude and expand the capabilities of the methods. The presented mini-review examines the results of using the ICP-AES, TJP-AES, and ICP-MS methods for the analysis of high-purity Ge, Cd, Te, Zn with the preconcentration of trace elements by distilling off the matrix of the sample, the use of electrothermal vaporization for introducing samples into plasma sources, and also the use of laser ablation ICP-MS for the analysis of trace element concentrates using the so-called “thin layer method”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Dieu Thuy Ung, T., Tran, T.K.C., Nga Pham, T., Nghia Nguyen, D., Khang Dinh, D., and Liem Nguyen, Q., Adv. Nat. Sci.: Nanosci. Nanotechnol., 2012, vol. 3, p. 043001. https://doi.org/10.1088/2043-6262/3/4/043001

    Article  CAS  ADS  Google Scholar 

  2. Al-Hamdi, T.K., McPherson, S.W., Swain, S.K., Jennings, J., Duenow, J.N., Zheng, X., Albin, D.S., Ablekim, T., Colegrove, E., Amarasinghe, M., Ferguson, A., Metzger, W.K., Szeles, C., and Lynn, K.G., J. Cryst. Growth, 2020, vol. 534, p. 125466. https://doi.org/10.1016/j.jcrysgro.2019.125466

    Article  CAS  Google Scholar 

  3. Kim, S., Song, J.-Y., Kim, D., Hong, J., Cho, I.J., Kim, Y.H., Jeong, J.-U., Yoon, M.S., Ahn, S.-J., Chung, W.-K., Nam, T.-K., and Cho, S., Energy Rep., 2021, vol. 7, p. 1396. https://doi.org/10.1016/j.egyr.2021.02.070

    Article  Google Scholar 

  4. Vidal, S., Degert, J., Tondusson, M., Freysz, E., and Oberle, J., J. Opt. Soc. Am. B, 2014, vol. 31, p. 149. https://doi.org/10.1364/JOSAB.31.000149

    Article  ADS  Google Scholar 

  5. Bakker, H., Cho, G., Kurz, H., Wu, Q., and Zhang, X.-C., J. Opt. Soc. Am. B, 1998, vol. 15, p. 1795. https://doi.org/10.1364/JOSAB.15.001795

    Article  CAS  ADS  Google Scholar 

  6. Vasiliev, Ya.V., Akhmetshin, R.R., Borovliev, Yu.A., Grigoriev, D.N., Gusev, V.A., Shlegel, V.N., and Smakhtin, V.P., Nucl. Instrum. Methods Phys. Res., Sect. A, 1996, vol. 379, p. 533. https://doi.org/10.1016/0168-9002(96)00613-4

    Article  CAS  Google Scholar 

  7. Sharp, B.L., J. Anal. At. Spectrom., 1988, vol. 3, p. 613.

    Article  CAS  Google Scholar 

  8. Surikov, V.T. and Pupyshev, A.A., Anal. Kontrol’, 2006, no. 2, p. 112.

  9. Cherevko, A.S., Yudelevich, I.G., Popova, V.P., and Tagil’tsev, A.P., Zh. Anal. Khim., 1988, vol. 43, p. 426.

    CAS  Google Scholar 

  10. Baranova, L.L., Kaplan B.Ya, Nazarova, M.G., and Razumova, L.S., Zavod. Lab., 1985, vol. 51, p. 31.

    CAS  Google Scholar 

  11. Shelpakova, I.R., Shcherbakova, O.I., Saprykin, A.I., Yudelevich, I.G., Kovalevskii, S.V., Rossin, A.E., Mironova, N.D., and Marin, A.S., Vysokochist. Veshchestva, 1987, no. 4, p. 203.

  12. Lundovskaya, O.V., Medvedev, N.S., Tsygankova, A.R., Volzhenin, A.V., and Saprykin, A.I., Spectrochim. Acta, Part B, 2021, vol. 177, p. 106049. https://doi.org/10.1016/j.sab.2020.106049

    Article  CAS  Google Scholar 

  13. Medvedev, N.S., Orlov, N.A., and Saprykin, A.I., At. Spectrosc., 2022, vol. 43, p. 430. https://doi.org/10.46770/AS.2022.248

    Article  CAS  Google Scholar 

  14. Sentimenti, E., Mazzetto, G., and Milella, E., J. Anal. At. Spectrom., 1993, vol. 8, p. 89. https://doi.org/10.1039/ja9930800089

    Article  CAS  Google Scholar 

  15. Niemela, M., Kola, H., and Peramaki, P., Anal. Sci., 2014, vol. 30, p. 735. https://doi.org/10.2116/analsci.30.735

    Article  CAS  PubMed  Google Scholar 

  16. Guselnikova, T.Ya., Tsygankova, A.R., and Medvedev, N.S., Spectrochim. Acta, Part B, 2022, vol. 197, p. 106544. https://doi.org/10.1016/j.sab.2022.106544

    Article  CAS  Google Scholar 

  17. Tsygankova, A.R., Shelpakova, I.R., Shestakov, V.A., and Saprykin, A.I., Zavod. Lab., Diagn. Mater., 2010, vol. 76, no. 9, p. 3.

    CAS  Google Scholar 

  18. Tsygankova, A.R., Shaverina, A.V., Shelpakova, I.R., and Saprykin, A.I., Anal. Kontrol’, 2012, vol. 16, no. 4, p. 420.

    Google Scholar 

  19. Medvedev, N.S., Shaverina, A.V., Tsygankova, A.R., and Saprykin, A.I., Talanta, 2016, vol. 155, p. 358. https://doi.org/10.1016/j.talanta.2016.02.052

    Article  CAS  PubMed  Google Scholar 

  20. Gunn, A.M., Millard, D.L., and Kirkbright, G.F., Analyst, 1978, vol. 103, p. 1066. https://doi.org/10.1039/AN9780301066

    Article  CAS  ADS  Google Scholar 

  21. Kirkbright, G.F. and Snook, R.D., Anal. Chem., 1979, vol. 51, p. 1938. https://doi.org/10.1021/ac50048a011

    Article  CAS  Google Scholar 

  22. Hsu, W.H., Jiang, S.J., and Sahayam, A.C., Talanta, 2013, vol. 117, p. 268. https://doi.org/10.1016/j.talanta.2013.09.013

    Article  CAS  PubMed  Google Scholar 

  23. Nixon, D.E., Fassel, V.A., and Kniseley, R.N., Anal. Chem., 1974, vol. 46, p. 210. https://doi.org/10.1021/ac60338a018

    Article  CAS  Google Scholar 

  24. Barth, P., Hauptkorn, S., and Krivan, V., J. Anal. At. Spectrom., 1997, vol. 12, p. 1359. https://doi.org/10.1039/ja9920700521

    Article  CAS  Google Scholar 

  25. Badiei, H.R., Lai, B., and Karanassios, V., Spectrochim. Acta, Part B, 2012, vol. 77, p. 19. https://doi.org/10.1016/j.sab.2012.07.025

    Article  CAS  ADS  Google Scholar 

  26. Kuptsov, A.V., Medvedev, N.S., Lundovskaya, O.V., Saprykin, A.I., and Labusov, V.A., J. Anal. At. Spectrom., 2021, vol. 36, p. 2669. https://doi.org/10.1039/D1JA00286D

    Article  CAS  Google Scholar 

  27. Kuptsov, A.V., Medvedev, N.S., Polyakova, E.V., Saprykin, A.I., and Labusov, V.A., Spectrochim. Acta, Part B, 2022, vol. 194, p. 106475. https://doi.org/10.1016/j.sab.2022.106475

    Article  CAS  Google Scholar 

  28. Medvedev, N.S., Lundovskaya, O.V., and Saprykin, A.I., Microchem. J., 2019, vol. 145, p. 751. https://doi.org/10.1016/j.microc.2018.11.014

    Article  CAS  Google Scholar 

  29. Medvedev, N.S., Volzhenin, A.V., and Saprykin, A.I., Microchem. J., 2020, vol. 157, p. 104970. https://doi.org/10.1016/j.microc.2020.104970

    Article  CAS  Google Scholar 

  30. Shaverina, A.V., Tsygankova, A.R., and Saprykin, A.I., J. Anal. Chem., 2015, vol. 70, p. 28. https://doi.org/10.7868/S004445021501017X

    Article  CAS  Google Scholar 

  31. Vysokochistye veshchestva (High-Purity Substances), Churbanov, M., Karpov, Yu., Zlomanov, P., and Fedorov, V., Eds., Moscow: Nauchnyi Mir, 2018.

    Google Scholar 

  32. Saprykin, A.I., Shelpakova, I.R., Chanysheva, T.A., and Yudelevich, I.G., Zh. Anal. Khim., 1983, vol. 38, no. 7, p. 1238.

    CAS  Google Scholar 

  33. Shelpakova, I.R., Saprykin, A.I., Chanysheva, T.A., and Yudelevich, I.G., Zh. Anal. Khim., 1983, vol. 38, no. 4, p. 581.

    CAS  Google Scholar 

  34. Chanysheva, T.A., Shelpakova, I.R., Saprykin, A.I., Yankovskaya, L.M., and Yudelevich, I.G., Zh. Anal. Khim., 1983, vol. 38, no. 6, p. 979.

    CAS  Google Scholar 

  35. Shelpakova, I.R., Saprykin, A.I., and Yudelevich, I.G., Probl. Anal. Khim., 1984, vol. 7, p. 143.

    Google Scholar 

  36. Medvedev, N.S., Kurbatova, V.D., and Saprykin, A.I., J. Anal. Chem., 2023, vol. 78, no. 3, p. 316. https://doi.org/10.31857/S004445022303009X

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation, project no. 121031700315-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Medvedev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Kudrinskaya

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medvedev, N.S., Saprykin, A.I. Development of Methods for Sample Preparation and Introduction into Excitation and Ionization Sources for Combined Procedures of Atomic Emission and Mass Spectral Analysis. J Anal Chem 79, 134–140 (2024). https://doi.org/10.1134/S1061934824020114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934824020114

Keywords:

Navigation