Skip to main content
Log in

1-Pyrenylboronic Acid as a Reactive Matrix for the Analysis of Polyfunctional Compounds by MALDI Mass Spectrometry: New Possibilities

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

1-Pyrenylboronic acid (1-PBA) is a type of a reactive matrix useful for the analysis of polyfunctional compounds by MALDI mass spectrometry. It exhibits conventional matrix properties (absorption and transfer of laser radiation energy) and acts as a derivatizing reagent capable of interacting with vicinal functional groups under mild conditions and forming covalent adducts. Pyrenyl group in its structure, which has high ability to absorb UV laser quanta, ensures the detection of analyte derivatives containing a 1-PBA residue as radical cations, which is untypical for MALDI. The effectiveness of its use was earlier proved for compounds containing 1,2-diol fragments. This work presents additional cases of using this reactive matrix in the analysis of practically significant compounds of this type, demonstrating that 1-PBA can also react with distant OH groups. Many examples show its applicability to the study of various α-hydroxy acids and vicinal aminols and capability of forming cyclic covalent adducts with 1,2-diamines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Karas, M., Bachmann, D., and Hillenkamp, F., Anal. Chem., 1985, vol. 57, no. 14, p. 2935.

    Article  CAS  Google Scholar 

  2. Jaskolla, T.W. and Karas, M., J. Am. Soc. Mass Spectrom., 2011, vol. 22, no. 6, p. 976.

    Article  CAS  PubMed  Google Scholar 

  3. Karas, M., Gluckmann, M., and Schafer, J., J. Mass Spectrom., 2000, vol. 35, no. 1, p. 1.

    Article  CAS  PubMed  Google Scholar 

  4. Brombacher, S., Owen, S.J., and Volmer, D.A., Anal. Bioanal. Chem., 2003, vol. 376, no. 6, p. 773.

    Article  CAS  PubMed  Google Scholar 

  5. Zaikin, V. and Halket, J., A Handbook of Derivatives for Mass Spectrometry, Chichester: IMP, 2009.

    Google Scholar 

  6. Zaikin, V.G. and Borisov, R.S., Crit. Rev. Anal. Chem., 2021. https://doi.org/10.1080/10408347.2021.1873100

  7. Zaikin, V.G. and Borisov, R.S., in Advances in Materials Science Research, Wythers M.C., Ed., New York: Nova Science, 2020, chapter 1, p. 1.

    Google Scholar 

  8. Borisov, R.S., Matveeva, M.D., and Zaikin, V.G., Crit. Rev. Anal. Chem., 2021. .https://doi.org/10.1080/10408347.2021.2001309

  9. Shroff, R., Muck, A., and Svatos, A., Rapid Commun. Mass Spectrom., 2007, vol. 21, p. 3295.

    Article  CAS  PubMed  Google Scholar 

  10. Shroff, R. and Svatos, A., Anal. Chem., 2009, vol. 81, no. 19, p. 7954.

    Article  CAS  PubMed  Google Scholar 

  11. Krivosheina, M.S., Borisov, R.S., Zhilyaev, D.I., et al., Rapid Commun. Mass Spectrom., 2021, vol. 35.

  12. Marinaro, W.A., Prankerd, R., Kinnari, K., et al., J. Pharm. Sci., 2015, vol. 104, no. 4, p. 1399.

    Article  CAS  PubMed  Google Scholar 

  13. Monopoli, A., Calvano, C.D., Naccia, A., et al., Chem. Commun., 2014, no. 50, p. 4322.

  14. Kaya, I., Brulls, S.M., Dunevall, J., et al., Anal. Chem., 2018, vol. 90, no. 22, p. 13580.

    Article  CAS  PubMed  Google Scholar 

  15. Cabrera-Pardo, J.R., Chai, D.I., Liu, S., et al., Nat. Chem., 2013, vol. 5, no. 5, p. 423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mandal, A., Singha, M., Addy, P.S., et al., Mass Spectrom. Rev., 2019, vol. 38, no. 1, p. 3.

    Article  CAS  PubMed  Google Scholar 

  17. Addy, P.S., Bhattacharya, A., Mandal, S.M., et al., RSC Adv., 2014, vol. 4, no. 87, p. 46555.

    Article  CAS  Google Scholar 

  18. Amano, J., Nishikaze, T., Tougasaki, F., et al., Anal. Chem., 2010, vol. 82, no. 20, p. 8738.

    Article  CAS  PubMed  Google Scholar 

  19. Mandal, A., Das, A.K., and Basak, A., RSC Adv., 2015, vol. 5, 106912.

    Article  CAS  Google Scholar 

  20. Kurihara, T., Min, J.Z., Hirata, A., et al., Biomed. Chromatogr., 2009, vol. 23, no. 5, p. 516.

    Article  CAS  PubMed  Google Scholar 

  21. Hauser, J.R., Bergstrom, E.T., Kulak, A.N., et al., ChemBioChem, 2021, vol. 22, no. 8, p. 1430.

    Article  CAS  PubMed  Google Scholar 

  22. Weishaar, R., Eur. J. Lipid Sci. Technol., 2011, vol. 113, no. 3, p. 304.

    Article  Google Scholar 

  23. Svejkovska, B., Doležal, M., and Velišek, J., Czech J. Food Sci., 2011, vol. 24, no. 4, p. 172.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was performed using the equipment of the Collective Use Center “Analytical Center for Problems of Deep Processing of Oil and Petrochemistry” of the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Funding

The study was supported by the Russian Foundation for Basic Research and the Government of Moscow as part of scientific projects nos. 21-33-70059 (study of using 1-PBA to detect diols) and 19-33-60037 (study of using 1-PBA to detect carboxylic acids).

Author information

Authors and Affiliations

Authors

Contributions

All authors equally contributed to this work.

Corresponding author

Correspondence to R. S. Borisov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matveeva, M.D., Zimens, M.E., Topolyan, A.P. et al. 1-Pyrenylboronic Acid as a Reactive Matrix for the Analysis of Polyfunctional Compounds by MALDI Mass Spectrometry: New Possibilities. J Anal Chem 77, 1729–1736 (2022). https://doi.org/10.1134/S1061934822140040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934822140040

Keywords:

Navigation