Skip to main content
Log in

Method for Correcting the Results of Energy-Dispersive Electron Probe Elemental Analysis of Powder Materials

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

We found the main regularities of quantitative changes in energy-dispersive spectra in the determination of the elemental composition of powdered materials. At certain energy of probing electrons, the calculation of the relative weight fractions of elements in powder samples gives results corresponding to those obtained for reference polished sample surfaces. Generalizing the experimental data yielded an empirical dependence that relates the parameters of characteristic photons to the value of accelerating voltage required to obtain the proper ratio of the weight concentrations of elements in the analysis of powdered materials. A procedure for correcting the results of the elemental analysis of powder samples is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Newbury, D.E. and Ritchie, N.W.M., J. Mater. Sci., 2015, vol. 50, no. 2, p. 493. https://doi.org/10.1007/s10853-014-8685-2

    Article  CAS  PubMed  Google Scholar 

  2. Newbury, D.E. and Ritchie, N.W.M., Scanning, 2013, vol. 35, no. 3, p. 141. https://doi.org/10.1002/sca.21041

    Article  CAS  PubMed  Google Scholar 

  3. Lavrent’ev, Yu.G., Karmanov, N.S., and Usova, L.V., Russ. Geol. Geophys. 2015, vol. 56, no. 8, p. 1154. https://doi.org/10.1016/j.rgg.2015.07.006

    Article  Google Scholar 

  4. Goldstein, J.I., Newbury, D.E., Michael, J.R., Ritchie, N.W.M., Scott, J.H.J., and Joy, D.C., Scanning Electron Microscopy and X-Ray Microanalysis, New York: Springer, 2018, 4th ed. https://doi.org/10.1007/978-1-4939-6676-9

    Book  Google Scholar 

  5. Newbury, D.E. and Ritchie, N.W.M., Microsc. Microanal., 2013, vol. 19, no. 2, p. 1244. https://doi.org/10.1017/S1431927613008210

    Article  Google Scholar 

  6. Hovington, P., Timoshevskii, V., Burgess, S., Demers, H., Statham, P., Gauvin, R., and Zaghib, K., Scanning, 2016, vol. 38, no. 6, p. 571. https://doi.org/10.1002/sca.21302

    Article  CAS  PubMed  Google Scholar 

  7. Béranger, M., Am. J. Phys. Appl., 2019, vol. 7, no. 2, p. 34. https://doi.org/10.11648/j.ajpa.20190702.11

    Article  Google Scholar 

  8. Li, X., Holland, J., Burgess, S., Bhadare, S., Yamaguchi, S., Birtwistle, D., Statham, P., and Rowlands, N., Microsc. Microanal., 2013, vol. 19, no. 2, p. 1136. https://doi.org/10.1017/S1431927613007678

    Article  Google Scholar 

  9. Burgess, S., Li, X., and Holland, J., Microsc. Microanal., 2013, vol. 27, no. 4, p. 8.

    Google Scholar 

  10. Armstrong, J.T. and Buseck, P.R., Anal. Chem., 1975, vol. 47, no. 13, p. 2178. https://doi.org/10.1021/ac60363a033

    Article  CAS  Google Scholar 

  11. Newbury, D.E., Scanning, 2004, vol. 26, no. 3, p. 103. https://doi.org/10.1002/sca.4950260302

    Article  CAS  PubMed  Google Scholar 

  12. Small, J.A., J. Res. Natl. Inst. Stand. Technol., 2002, vol. 107, no. 6, p. 555. https://doi.org/10.6028/jres.107.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Trincavelli, J. and Van Grieken, R.E., X-Ray Spectrom., 1994, vol. 23, p. 254. https://doi.org/10.1002/xrs.1300230605

    Article  CAS  Google Scholar 

  14. Labar, J.L. and Torok, S.B., X-Ray Spectrom., 1992, vol. 21, p. 183. https://doi.org/10.1002/xrs.1300210407

    Article  CAS  Google Scholar 

  15. Hovington, P., Lagace, M., and Rodrigue, L., Microsc. Microanal., 2002, vol. 8, no. 2, p. 1472. https://doi.org/10.1017/S1431927602103990

    Article  Google Scholar 

  16. Armstrong, J.T. and Buseck, P.R., X-Ray Spectrom., 1985, vol. 14, no. 4, p. 172. https://doi.org/10.1002/xrs.1300140408

    Article  CAS  Google Scholar 

  17. Armstrong, J.T., in Electron Probe Quantification, Heinrich, K.J.F. and Newbury, D.E., New York: Plenum, 1991, p. 261. https://doi.org/10.1007/978-1-4899-2617-315

  18. Gauvin, R., Hovington, P., and Drouin, D., Scanning, 1995, vol. 17, no. 4, p. 202. https://doi.org/10.1002/sca.4950170401

    Article  CAS  Google Scholar 

  19. Storms, H.M., Janssens, K.H., Torok, S.B., and Van Grieken, R.E., X-Ray Spectrom., 1989, vol. 18, p. 45. https://doi.org/10.1002/xrs.1300180203

    Article  CAS  Google Scholar 

  20. Paoletti, A., Bruni, B.M., Gianfagna, A., Mazziotti-Tagliani, S., and Pacella, A., Microsc. Microanal., 2011, vol. 12, no. 5, p. 710. https://doi.org/10.1017/S1431927611000432

    Article  CAS  Google Scholar 

  21. Ritchie, N.W.M., Microsc. Microanal., 2010, vol. 16, no. 3, p. 248. https://doi.org/10.1017/S1431927610000243

  22. Pukhov, D.E. and Lapteva, A.A., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2020, vol. 14, no. 5, p. 889. https://doi.org/10.1134/S1027451020050146

    Article  Google Scholar 

  23. Drouin, D., Couture, A.R., Joly, D., Tastet, X., Aimez, V., and Gauvin, R., Scanning, 2007, vol. 29, no. 3, p. 92. https://doi.org/10.1002/sca.20000

    Article  CAS  PubMed  Google Scholar 

  24. Drouin, D., Hovington, P., and Gauvin, R., Scanning, 1997, vol. 19, no. 1, p. 20. https://doi.org/10.1002/sca.4950190103

    Article  CAS  Google Scholar 

  25. Hovington, P., Drouin, D., and Gauvin, R., Scanning, 1997, vol. 19, no. 1, p. 1. https://doi.org/10.1002/sca.4950190101

    Article  CAS  Google Scholar 

  26. Hovington, P., Drouin, D., Gauvin, R., Joy, D.C., and Evans, N., Scanning, 1997, vol. 19, no. 1, p. 29. https://doi.org/10.1002/sca.4950190104

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We used analytical equipment of the Facilities Sharing Center “Diagnostics of Micro- and Nano Structures.”

Funding

The work was carried out within the framework of the state assignment to the Yaroslavl Branch of the Valiev Institute of Physics and Technology, Russian Academy of Sciences, from the RF Ministry of Science and Higher Education, topic no. FFNN-2022-0018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. E. Pukhov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pukhov, D.E., Lapteva, A.A. Method for Correcting the Results of Energy-Dispersive Electron Probe Elemental Analysis of Powder Materials. J Anal Chem 77, 1162–1172 (2022). https://doi.org/10.1134/S1061934822090118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934822090118

Keywords:

Navigation