Skip to main content
Log in

Solid-State Gas Sensors

  • REVIEWS
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

The main directions in developing solid-state gas-sensitive sensors are considered, i.e., catalytic (including semiconductor), electrochemical, thermoelectric, optical, and acoustic gas sensors. The principles of operation, the advantages and disadvantages of sensors of each type are discussed, and their analytical capabilities for the selective detection of gases are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Cattrall, R.W., Chemical Sensors, Oxford: Oxford Univ. Press, 1997.

    Google Scholar 

  2. Yamazoe, N., Sens. Actuators, B, 2005, vol. 108, no. 1, p. 2.

    Article  CAS  Google Scholar 

  3. Semiconductor Gas Sensors, Raivo Jaaniso and Ooi Kiang Tan, Eds., Cambridge: Woodhead, 2020, 2nd ed.

  4. Korotcenkov, G., Chemical Sensors: Fundamentals of Sensing Materials, vol. 1: General Approaches, New York: Momentum, 2010.

    Google Scholar 

  5. Korotcenkov, G., Handbook of Humidity Measurement, vol. 2: Electronic and Electrical Humidity Sensors, New York: CRC, 2019.

    Google Scholar 

  6. Blank, T., Eksperiandova, L., and Belikov, K., Sens. Actuators, B, 2016, vol. 228, p. 416.

    Article  CAS  Google Scholar 

  7. Campbell, M., Amsterdam: Springer, 1997, p. 376.

  8. Fine, G.F., Cavanagh, L.M., Afonja, A., and Binions, R., Sensors, 2010, vol. 10, p. 5469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dey, S. and Dhal, G.C., Mater. Sci. Energy Technol., 2019, vol. 2, p. 607.

    Google Scholar 

  10. Gas Sensor Market Size, Share & Trends Analysis, Report by Product 2021–2028, Grand View Research Report, 2021, Report ID 978-1-68038-083. https://www. grandviewresearch.com/industry-analysis/gas-sensors-market. Accessed March 25, 2021.

  11. Degler, D., Allmendinger, F., and Barsan, N., in Reference Module in Materials Science and Materials Engineering, Amsterdam: Elsevier, 2020, p. 37.

    Google Scholar 

  12. Neri, G., Chemosensors, 2015, vol. 3, 3010001.

    Article  Google Scholar 

  13. Berganza, C.J. and Zhang, J.H., Med. Gas Res., 2013, vol. 3, no. 1, 18.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bocci, V., Zanardi, J., and Travagli, V., Med. Gas Res., 2011, vol. 1, no. 1, 6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rushman, G.B., Davis, N.H., and Atkinson, R.S., A Short History of Anaesthesia: The First 150 Years, Oxford: Butterworth-Heinemann, 1995.

    Google Scholar 

  16. Kononov, A., Korotetsky, B., Jahatspanian, I., Gubal, A., Vasiliev, A., Arseniev, A., Nefedov, A., Barchuk, A., Gorbunov, I., Kozyrev, K., Rassadina, A., Iakovleva, E., Sillanpaa, M., Safaei, Z., Ivanenko, N., Stolyarova, N., Chuchina, V., and Ganeev, A., J. Breath Res., 2020, vol. 14, no. 10, 016004.

    Article  CAS  Google Scholar 

  17. Mukhamedieva, L.N., Tsar’kov, D.S., Ozerov, D.S., Grigor’ev, G.Yu., Lagutin, A.S., Nabiev, Sh.Sh., Vasil’ev, A.A., Malashevich, S.V., and Stavrovskii, D.B., Aviakosm. Ekol. Med., 2020, vol. 54, no. 3, p. 5.

    Google Scholar 

  18. Aroutiounian, V.M., Biomed. J. Sci. Tech. Res., 2020, vol. 22, p. 22328.

    Google Scholar 

  19. Yunusa, Z., Hamidon, M.N., Kaiser, A., and Awang, Z., Sens. Transducers J., 2014, vol. 168, p. 61.

    Google Scholar 

  20. Nazemi, H., Joseph, A., Park, J., and Emadi, A., Sensors, 2019, vol. 19, 1285.

    Article  CAS  PubMed Central  Google Scholar 

  21. Hubert, T., Boon, BrettL., Palmisano, V., and Bader, M.A., Int. J. Hydrogen Energy, 2014, vol. 39, no. 35, p. 20474.

    Google Scholar 

  22. IDTechEx Report 2017. Environmental gas sensors 2017–2027. http://www.idtechex.com/en/research-report/environmental-gas-sensors-2017-2027/500. Accessed April 25, 2021.

  23. Karpov, E.F., Birenberg, I.E., and Basovskii, B.I., Avtomaticheskaya gazovaya zashchita i kontrol’ rudnichnoi atmosfery (Automatic Gas Protection and Mine Atmosphere Control), Moscow: Nedra, 1984.

  24. Karpova, E., Mironov, S., Suchkov, A., Karelin, A., Karpov, E.E., and Karpov, E.F., Sens. Actuators, B, 2014, vol. 197, p. 358.

    Article  CAS  Google Scholar 

  25. Vasiliev, A., Merzlikin, S., Shakhnovich, I., Sokolov, A., and Agafonov, P., Proceedings, 2017, vol. 1, p. 603.

    Google Scholar 

  26. Yamazoe, N. and Shimanoe, K., J. Sens., 2009, 875704.

  27. Bochenkov, V.E. and Sergeev, G.B., in Metal Oxide Nanostructures and Their Applications, vol. 3, Ahmod Umar and Yoon-Bong Hahn, Eds., Valencia, CA: Am. Sci. Publ., 2010, p. 31.

  28. Yamazoe, N. and Shimanoe, K., in Semiconductor Gas Sensors, Raivo Jaaniso and Ooi Kiang Tan, Eds., Cambridge: Woodhead, 2020, 2nd ed., p. 4.

    Book  Google Scholar 

  29. Barsan, N., Huebner, M., and Weimar, U., in Semiconductor Gas Sensors, Raivo Jaaniso and Ooi Kiang Tan, Eds., Cambridge: Woodhead, 2020, 2nd ed., p. 39.

    Google Scholar 

  30. Obvintseva, L.A., Ross. Khim. Zh., 2008, vol. 52, no. 2, p. 114.

    Google Scholar 

  31. Arsent’ev, M.Y., Kalinina, M.V., Koval’ko, N., Simonenko, T.L., Morozova, L.V., Tikhonov, P.A., and Shilova, O.A., Inorg. Mater.: Appl. Res., 2020, vol. 11, no. 2, p. 441.

    Article  Google Scholar 

  32. Nie, O., Pang, Z., Lu, H., and Cai, Y., Beilstein J. Nanotechnol., 2016, vol. 7, no. 1, p. 1312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Inyawilert, K., Wisitsoraat, A., Liewhiran, C., Tuantranont, A., and Phanichphant, S., Appl. Surface Sci., 2018, vol. 475, p. 191.

    Article  Google Scholar 

  34. Staerz, A., Somacescu, S., Mauro, M., Russ, T., Weimar, U., and Barsan, N., Proceedings, 2018, vol. 2, 826.

    Google Scholar 

  35. Xing, R., Du, Y., and Zhao, X., Sensors, 2017, vol. 17, 710.

    Article  PubMed Central  Google Scholar 

  36. Li, Z.H., Xie, J., Hu, X.D., Chen, C., and Xie, L., Mater. Sci. Forum, 2018, vol. 939, p. 133.

    Article  Google Scholar 

  37. Kumar, R., Al-Dossary, O., Kumar, G., and Umar, A., Nano-Micro Lett., 2015, vol. 7, p. 97.

    Article  Google Scholar 

  38. Qi, J., Zhang, H., Lu, S., Li, X., and Zhang, Y., J. Nanomater., 2015, 954747.

  39. Yu, Z., Gao, J., Xu, L., Liu, T., Wang, X., Suo, H., and Zhao, C., Crystals, 2020, vol. 10, no. 3, p. 145.

    Article  CAS  Google Scholar 

  40. Comini, E., Faglia, G., and Sberveglieri, G., Appl. Phys. Lett., 2002, vol. 81, no. 10, p. 1869.

    Article  CAS  Google Scholar 

  41. Fedorenko, G., Oleksenko, L., Maksymovich, N., and Ripko, O., Nanoscale Res. Lett., 2017, vol. 12, 329.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chegereva, K.L., Shaposhnik, A.V., Moskalev, P.V., and Zvyagin, A.A., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2019, vol. 62, no. 4, p. 76.

    Article  CAS  Google Scholar 

  43. Efimov, A., Volkov, I., Varfolomeev, A., and Vasiliev, A., Orient. J. Chem., 2016, vol. 32, no. 6, p. 2909.

    Article  CAS  Google Scholar 

  44. Pavelko, R.G., Vasiliev, A.A., Llobet, E., Gisper-Guirado, F., Barrabes, N., Llorca, J., and Sevastyanov, V., Mater. Chem. Phys., 2010, vol. 121, nos. 1–2, p. 267.

    Article  CAS  Google Scholar 

  45. Rzaij, J.M. and Abass, A.M., J. Chem. Rev., 2020, vol. 2, p. 114.

    Article  CAS  Google Scholar 

  46. Maziarz, W., Kusior, A., and Trenczek-Zajac, A., Beilstein J. Nanotechnol., 2016, vol. 7, p. 1718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sihar, N., Tiong, T.Y., Dee, C.F., Ooi, P.C., Mohamed, M.A., and Majlis, B.Y., Nanoscale Res. Lett., 2018, vol. 13, 150.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ayesh, A.I., Alyafei, A.A., Anjum, R.S., Mohamed, R.M., Abuharb, M.B., Salah, B., and El Muraikhi, M., Appl. Phys. A: Mater. Sci. Process., 2019, vol. 125, 550.

    Article  CAS  Google Scholar 

  49. Semiconductor Gas Sensors, Raivo Jaaniso and Ooi Kiang Tan, Eds., New York: Woodhead, 2013.

  50. Seesaard, T., Kerdcharoen, T., and Wongchoosuk, C., in Semiconductor Gas Sensors, Raivo Jaaniso and Ooi Kiang Tan, Eds., Cambridge: Woodhead, 2020, 2nd ed., p. 186.

    Google Scholar 

  51. Sun, D., Luo, Y., Debliquy, M., and Zhang, C., Beilstein J. Nanotechnol., 2018, vol. 91, p. 2832.

    Article  Google Scholar 

  52. Zhang, D., Chang, H., Li, P., Liu, R., and Xue, Q., Sens. Actuators, B, 2016, vol. 225, p. 233.

    Article  CAS  Google Scholar 

  53. Korotcenkov, G., Brinzari, V., and Cho, B.K., J. Sens., 2016, 3816094.

  54. Vasiliev, A.A., Varfolomeev, A.E., Volkov, I.A., Simonenko, N.P., Arsenov, P.V., Vlasov, I.S., Ivanov, V.V., Pislyakov, A.V., Lagutin, A.S., Jahatspanian, I.E., and Maeder, T., Sensors, 2018, vol. 18, no. 8, p. 2600.

    Article  PubMed Central  Google Scholar 

  55. Han, T.H., Bak, S.Y., Kim, S., Lee, S.H., Han, Y.J., and Yi, M., Sensors, 2021, vol. 21, 2103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vasil’ev, A.A., Lagutin, A.S., and Nabiev, Sh.Sh., Russ. J. Inorg. Chem., 2020, vol. 65, no. 12, p. 1948.

    Article  Google Scholar 

  57. Dattoli, E.N., Davydov, A.V., and Benkstein, K.D., Nanoscale, 2012, vol. 4, p. 1760.

    Article  CAS  PubMed  Google Scholar 

  58. Feng, P., Shao, F., Shi, Y., and Wan, Q., Sensors, 2014, vol. 14, no. 9, p. 17406.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zappa, D., Bertuna, A., Comini, E., Kaur, N., Poli, N., Sberveglieri, V., and Sberveglieri, G., Beilstein J. Nanotechnol., 2017, vol. 8, p. 1205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zeng, Z., Wang, K., Zhang, Z., Chen, J., and Zhou, W., Nanotecnology, 2009, vol. 20, no. 4, 045503.

    Article  Google Scholar 

  61. Tseng, A.C., Lynall, D., Savelyev, I., Blumin, M., and Wang, S., Sensors, 2017, vol. 17, p. 1640.

    Article  PubMed Central  Google Scholar 

  62. Li, C., Zhang, D., Liu, X., Han, S., Tang, T., Han, J., and Zhou, C., Appl. Phys. Lett., 2003, vol. 82, no. 10, p. 1613.

    Article  CAS  Google Scholar 

  63. Cai, B., Zhao, X., Pei, T., Toninelli, E., and Liu, Y., Appl. Phys. Lett., 2014, vol. 104, 073112.

    Article  Google Scholar 

  64. Zou, X., Wang, J., Liu, X., Wang, C., Jiang, Y., Wang, Y., Xiao, X., Ho, C., Li, J., Jiang, C., Fang, Y., Liu, W., and Liao, L., Nano Lett., 2013, vol. 13, no. 7, p. 3287.

    Article  CAS  PubMed  Google Scholar 

  65. Andersson, M., Lloyd Spetz, A., and Puglisi, D., in Semiconductor Gas Sensors, Raivo Jaaniso and Ooi Kiang Tan, Eds., Cambridge: Woodhead, 2020, 2nd ed., p. 309.

    Google Scholar 

  66. SenSiC Gas Sensors. Gas sensors for improved energy efficiency and reduced emission. https://sensic.se/. Accessed April 17, 2021.

  67. Puglisi, D., Eriksson, J., Andersson, M., Huotari, J., Bastuck, M., Bur, C., Lappalainen, J., Schuetze, A., and Lloyd Spetz, A., Mater. Sci. Forum, 2016, vol. 858, p. 997.

    Article  Google Scholar 

  68. Casalsa, O., Beckerb, T., and Romano-Rodriguez, A., Sens. Actuators, B, 2012, vol. 175, p. 60.

    Article  Google Scholar 

  69. Basu, S. and Bhattacharyya, P., Sens. Actuators, B, 2012, vol. 173, p. 1.

    Article  CAS  Google Scholar 

  70. Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.L., and Novoselov, K.S., Nat. Mater., 2007, vol. 6, no. 9, p. 652.

    Article  CAS  PubMed  Google Scholar 

  71. Acharyya, D. and Bhattacharyya, P., in Functional Nanomaterials, Singapore: Springer, 2020, p. 245.

    Google Scholar 

  72. Toda, K., Furue, R., and Hayami, S., Anal. Chim. Acta, 2015, vol. 878, p. 43.

    Article  CAS  PubMed  Google Scholar 

  73. Selvakumar, D., Sivaram, H., Alsalme, A., Alghamdi, A., and Jayavel, R., Sci. Rep., 2019, vol. 9, no. 1, p. 8749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sakthivel, B. and Nammalvar, G., J. Alloys Compd., 2019, vol. 788, no. 4, p. 422.

    Article  CAS  Google Scholar 

  75. Wang, Z., Sackmann, A., Gao, S., Weimar, U., Lu, G., Liu, S., Zhang, T., and Barsan, N., Sens. Actuators, B, 2019, vol. 285, p. 590.

    Article  CAS  Google Scholar 

  76. Hu, H., Yang, X., Guo, X., Khaliji, K., Biswas, S., de Abajo, F.G., Low, T., Sun, Z., and Dai, Q., Nat. Commun., 2019, vol. 10, p. 113.

    Article  Google Scholar 

  77. Gerasimov, G.Y., in Advanced Environmental Analysis: Applications of Nanomaterials, Hussain, C.M. and Kharisov, B., Eds., London: R. Soc. Chem., 2017, vol. 2, p. 133.

    Google Scholar 

  78. Lemme, M.C., Wagner, S., Lee, K., Fan, X., Verbiest, G.J., Wittmann, S., Lukas, S., Dolleman, R.J., Niklaus, F., van der Zant, H., Duesberg, G.S., and Steeneken, P.G., AAAS Res., 2020, 8748602.

  79. Pitroda, J., Jethwa, B., and Dave, S., Int. J. Comput. Civil Struct. Eng., 2016, vol. 2, p. 36.

    Google Scholar 

  80. Liu, X., Cheng, S., Liu, H., Zhang, D., and Ning, H., Sensors, 2012, vol. 12, no. 7, p. 9635.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Sinha, N., Ma, J., and Yeow, J.W., J. Nanosci. Nanotechnol., 2006, vol. 6, no. 3, p. 573.

    Article  CAS  PubMed  Google Scholar 

  82. Lahade, S.V. and Pardhi, P.D., Int. J. Recent Trends Eng. Res., 2018, vol. 4, no. 2, p. 108.

    Google Scholar 

  83. Han, T., Nag, A., Mukhopadhyay, S.C., and Xu, Y., Sens. Actuators, A, 2019, vol. 219, p. 107.

    Article  Google Scholar 

  84. Zhang, W.D. and Zhang, W.H., J. Sens., 2009, 160698.

  85. Zaporotskova, I.V., Boroznina, N.P., Parkhomenko, Yu.N., and Kozhitov, L.V., Izv. Vyssh. Uchebn. Zaved., Mater. Elektron. Tekh., 2017, vol. 20, no. 1, p. 5.

    CAS  Google Scholar 

  86. Kerdcharoen, T. and Wongchoosuk, C., in Semiconductor Gas Sensors, Raivo Jaaniso and Ooi Kiang Tan, Eds., Cambridge: Woodhead, 2020, 2nd ed., p. 386.

    Google Scholar 

  87. Li, J., Lu, Y., Ye, Q., Cinke, M., Han, J., and Meyyappan, M., Nano Lett., 2003, vol. 3, no. 7, p. 929.

    Article  CAS  Google Scholar 

  88. Llobet, E., Espinosa, E.H., Sotter, E., Ionescu, R., Vilanova, X., Torres, J., Felten, A., Pireaux, J.J., Ke, X., Tendeloo, G.V., Renaux, F., Paint, Y., Hecq, M., and Bittencourt, C., Nanotechnology, 2008, vol. 19, no. 37, 375501.

    Article  CAS  PubMed  Google Scholar 

  89. Espinosa, E.H., Ionescu, R., Chambon, B., Bedis, G., Sotter, E., Bittencourt, C., Felten, A., Pireaux, J.J., Correig, X., and Llobet, E., Sens. Actuators, B, 2007, vol. 127, p. 137.

    Article  CAS  Google Scholar 

  90. Hieu, N., Thuya, L.T., and Chien, N., Sens. Actuators, B, 2008, vol. 129, no. 2, p. 888.

    Article  Google Scholar 

  91. Randeniya, L., Martin, P.J., and Bendavid, A., Carbon, 2012, vol. 50, p. 1786.

    Article  CAS  Google Scholar 

  92. Gaikwad, S., Bodkhe, G., Deshmukh, M., Rushi, A., and Shirsat, M.D., Mod. Phys. Lett. B, 2015, vol. 29, no. 6, 1540046.

    Article  CAS  Google Scholar 

  93. Liu, X., Ma, T., Pinna, N., and Zhang, J., Adv. Funct. Mater., 2017, vol. 27, no. 37, 1702168.

    Article  Google Scholar 

  94. Joshi, N., Hayasaka, T., Liu, Y., Oliveira, O.N., and Lin, L., Microchim. Acta, 2018, vol. 185, no. 4, p. 213.

    Article  Google Scholar 

  95. Donarelli, M. and Ottaviano, L., Sensors, 2018, vol. 18, no. 11, 3838.

    Article  Google Scholar 

  96. Cho, B., Kim, A.R., Park, Y., Yoon, J., Lee, Y.J., Lee, S., Yoo, T.J., Kang, C.G., Lee, B.H., Ko, Y.C., Kim, J.H., and Hahm, M.G., ACS Appl. Mater. Interfaces, 2015, vol. 7, p. 2952.

    Article  CAS  PubMed  Google Scholar 

  97. Liu, B., Chen, L., Liu, G., Abbas, A.N., and Fathi, M., ACS Nano, 2014, vol. 8, p. 5304.

    Article  CAS  PubMed  Google Scholar 

  98. Mayorga-Martinez, C.C., Ambrosi, A., Eng, A.Y.S., Sofer, Z., and Pumera, M., Adv. Funct. Mater., 2015, vol. 25, no. 35, p. 5611.

    Article  CAS  Google Scholar 

  99. Abbas, A.N., Liu, B., Chen, L., Ma, Y., Cong, S., Aroonyadet, N., Kopf, M., Nilges, T., and Zhou, C., ACS Nano, 2015, vol. 9, no. 5, p. 5618.

    Article  CAS  PubMed  Google Scholar 

  100. Ivanov-Shits, A.K., Ionika tverdogo tela (Solid State Ionics), 2 vols., St. Petersburg: St. Petersburg. Gos. Univ., 2010.

  101. Korotcenkov, G. Chemical Sensors: Comprehensive Sensor Technologies, vol. 5: Electrochemical and Optical Sensors, New York: Momentum, 2012.

    Google Scholar 

  102. Liang, X., Wang, B., and Zhang, H., Sens. Actuators, B, 2013, vol. 187, p. 522.

    Article  CAS  Google Scholar 

  103. Fischer, S., Pohle, R., Magori, E., Fleischer, M., and Moos, R., Procedia Eng., 2014, vol. 87, p. 620.

    Article  CAS  Google Scholar 

  104. Safiullin, R.N. and Kerimov, M.A., Intellektual’nye bortovye sistemy na avtomobil’nom transporte (Intelligent On-Board Systems in Road Transport) Moscow: Directmedia, 2017.

  105. Vasiliev, A.A., Filippov, V., Dobrovolsky, Yu., Pisareva, A., Moritz, W., and Palombari, R., Russ. J. Electrochem., 2007, vol. 43, no. 5, p. 561.

    Article  CAS  Google Scholar 

  106. Remez, I.D., Barbin, N.M., Alekseev, S.G., and Orlov, S.A., Pozharovzryvobezopasnost’, 2009, vol. 18, no. 2, p. 62.

    CAS  Google Scholar 

  107. Vasil’ev, A.A., Datchiki Sist., 2004, vol. 9, p. 20.

    Google Scholar 

  108. Rettig, F. and Moos, R., in Semiconductor Gas Sensors, Raivo Jaaniso and Ooi Kiang Tan, Eds., Cambridge: Woodhead, 2020, 2nd ed., p. 347.

    Google Scholar 

  109. Shin, W., Matsumiya, M., Izu, N., and Murayama, N., Sens. Actuators, B, 2003, vol. 93, nos. 1–3, p. 304.

    Article  CAS  Google Scholar 

  110. Shin, W., Tajima, K., Matsubara, I., Murayama, N., Nishibori, M., and Goto, N., J. Ceram. Soc. Jpn., 2019, vol. 127, no. 2, p. 57.

    Article  CAS  Google Scholar 

  111. Shin, W., Goto, T., Nagai, D., Itoh, T., Tsuruta, A., Akamatsu, T., and Sato, K., Sensors, 2018, vol. 18, no. 5, 1579.

    Article  PubMed Central  Google Scholar 

  112. Shin, W., Tajima, K., Choi, Y., Izu, N., Matsubara, I., and Murayama, N., MRS Proc., 2004, vol. 828, A7.2.

  113. Pérez-Taborda, J.A., Caballero-Calero, O., and Martin-Gonzales, M., Silicon-Germanium (SiGe) Nanostructures for Thermoelectric Devices: Recent Advances and New Approaches to High Thermoelectric Efficiency, London: IntechOpen, 2017. https://doi.org/10.5772/67730

  114. Rettig, F. and Moos, R., IEEE Sens. J., 2007, vol. 7, no. 11, p. 1490.

    Article  CAS  Google Scholar 

  115. Rettig, F. and Moos, R., Meas. Sci. Technol., 2009, vol. 20, no. 6, 065205.

    Article  Google Scholar 

  116. Hagen, G., Harsch, A., and Moos, R., J. Sens. Sens. Syst., 2018, vol. 7, p. 79.

    Article  Google Scholar 

  117. Rettig, F. and Moos, R., Sens. Actuators, B, 2010, vol. 145, p. 685.

    Article  CAS  Google Scholar 

  118. Ritter, T., Wiegartner, S., Hagen, G., and Moos, R., J. Sens. Sens. Syst., 2017, vol. 6, p. 395.

    Article  Google Scholar 

  119. Bektas, M., Stocker, T., Mergner, A., and Moos, R., J. Sens. Sens. Syst., 2018, vol. 7, p. 289.

    Article  Google Scholar 

  120. Wiegartner, S., Hagen, G., Kita, J., Reitmeier, W., Grass, P., and Moos, R., Sens. Actuators, B, 2014, vol. 214, p. 234.

    Article  Google Scholar 

  121. DYNAMENT premier range of gas sensors. http://dynament.ru/pdf/tds0048.pdf. Accessed March 30, 2021.

  122. MIPEX family of optical (IR) gas sensors. https://mipex-tech.com/ru/catalog/mipex-02. Accessed April 14, 2021.

  123. Narasimman, S., Balakrishnan, L., Meher, S., Sivacoumar, R., and Alex, Z., AIP Conf. Proc., 2016, vol. 1731, 050052.

    Article  Google Scholar 

  124. Constantinoiu, I. and Viespe, C., Sensors, 2020, vol. 20, 5118.

    Article  CAS  PubMed Central  Google Scholar 

  125. Wang, S.Y., Ma, J.Y., Li, Z.J., Su, H.Q., Alkurd, N.R., Zhou, W.L., Wang, L., Bo, Du., Tang, Y.L., Ao, D.Y., Zhang, S.C., and Yu, Q.K., J. Hazard. Mater., 2015, vol. 285, no. 21, p. 368.

    Article  CAS  PubMed  Google Scholar 

  126. Kulha, P., Kroutil, J., Laposa, A., Procházka, V., and Husák, M., J. Electr. Eng., 2016, vol. 67, p. 61.

    Google Scholar 

  127. Mounier, E. and Roussel, B., Gas & Particle Sensors Report 2018, Yole Developpment. http://www.systemplus.fr/wp-content/uploads/2018/11/YD18046_Gas_ and_Particle_Sensors_Yole_Developpement_sample. pdf. Accessed April 14, 2021.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Lagutin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lagutin, A.S., Vasil’ev, A.A. Solid-State Gas Sensors. J Anal Chem 77, 131–144 (2022). https://doi.org/10.1134/S1061934822020083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934822020083

Keywords:

Navigation