Skip to main content
Log in

Determination of Trace Elements in Biological Fluids by Arc Atomic Emission Spectrometry

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Determination of macro- and trace elements in various biological fluids, including saliva and blood serum, is widely used for medical diagnostics and assessment of the impact of anthropogenic factors on human health. The most popular methods of spectral analysis have several disadvantages, including the need in sample preparation. As an alternative, we proposed a direct (without digestion) analysis of biofluids by arc atomic emission spectrometry using the dry residue method. The experimentally found optimal amount of the spectral buffer (0.15 mg of NaCl) and current strength (20 A) ensure a high-intensity analytical signal and a better limit of detection. The selected conditions also neutralize the effect of the saliva and serum matrix on the parameters of the arc plasma (temperature and electron concentration), which enables the use of standard aqueous solutions of element salts for plotting calibration curves. When 150 µL of a whole saliva sample is applied to one end of the electrode, the limits of detection are at the level of no more than 1 µg/L for Ag, Al, Cd, Cu, Fe, Mn, and Zn and several micrograms per liter for Cr, Pb, and Ti. No more than 50 µL of blood serum can be applied to the electrode end face; the limits of detection, in this case, are three times higher. We assessed the accuracy of the determination of trace elements in real samples of saliva and blood serum. Additionally, a possibility of determining macroelements (Ca, Mg, P, Si) in saliva is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Parsons, P.J. and Barbosa, F., Spectrochim. Acta, Part B, 2007, vol. 62, no. 9, p. 992. https://doi.org/10.1016/j.sab.2007.03.007

    Article  CAS  Google Scholar 

  2. Savory, J. and Wills, M.R., Clin. Chem., 1992, vol. 38, no. 8, p. 1565.

    CAS  PubMed  Google Scholar 

  3. Kakkar, P. and Jaffery, F.N., Environ. Toxicol. Pharmacol., 2005, vol. 19, no. 2, p. 335. https://doi.org/10.1016/j.etap.2004.09.003

    Article  CAS  PubMed  Google Scholar 

  4. Bonde, J.P. and Christensen, J.M., Arch. Environ. Health, 1991, vol. 46, no. 4, p. 225. https://doi.org/10.1080/00039896.1991.9937453

    Article  CAS  PubMed  Google Scholar 

  5. Jarup, L., Elinder, C.G., and Spang, G., Int. Arch. Occup. Environ. Health, 1988, vol. 60, no. 3, p. 223. https://doi.org/10.1007/BF00378700

    Article  CAS  PubMed  Google Scholar 

  6. Zheng, W., Jiang, Y.-M., Zhang, Y., Jiang, W., Wang, X., and Cowan, D.M., Neurotoxicology, 2009, vol. 30, no. 2, p. 240. https://doi.org/10.1016/j.neuro.2008.12.007

    Article  CAS  PubMed  Google Scholar 

  7. Zheng, W., Fu, S.X., Dydak, U., and Cowan, D.M., Neurotoxicology, 2011, vol. 32, no. 1, p. 1. https://doi.org/10.1016/j.neuro.2010.10.002

    Article  CAS  PubMed  Google Scholar 

  8. Lee, J.M., Garon, E., and Wong, D.T., Dent. Abstr., 2011, vol. 56, no. 1, p. 53.

    Article  Google Scholar 

  9. Taylor, A., Day, M.P., Hill, S., Marshall, J., Patriarca, M., and White, M., J. Anal. At. Spectrom., 2015, vol. 30, no. 3, p. 542. https://doi.org/10.1039/c5ja90001h

    Article  CAS  Google Scholar 

  10. Lopez-Jornet, P., Juan, H., and Alvaro, P.F., J. Oral Pathol. Med., 2014, vol. 43, no. 2, p. 111. https://doi.org/10.1111/jop.12105

    Article  CAS  PubMed  Google Scholar 

  11. Menegario, A.A. and Gine, M.F., Spectrochim. Acta, Part B, 2001, vol. 56, no. 10, p. 1917. https://doi.org/10.1016/S0584-8547(01)00321-4

    Article  Google Scholar 

  12. Monaci, F., Bargagli, E., Bravi, F., and Rottoli, P., Biol. Trace Elem. Res., 2002, vol. 89, no. 3, p. 193. https://doi.org/10.1385/BTER:89:3:193

    Article  CAS  PubMed  Google Scholar 

  13. MUK (Methodical Guidelines) 4.1.1482-03: Determination of the Concentration of Chemical Elements in Diagnosed Biosubstrates, Multivitamin Preparations with Microelements, Biologically Active Food Additives, and Raw Materials for Their Manufacture by Atomic Emission Spectrometry with Inductively Coupled Argon Plasma.

  14. Marco, L.M., Greaves, E.D., and Alvarado, J., Spectrochim. Acta, Part B, 1999, vol. 54, no. 10, p. 1469. https://doi.org/10.1016/S0584-8547(99)00085-3

    Article  Google Scholar 

  15. Guo, W., Dong, S., Jin, Y., Pan, Z., Pearce, E.N., Wu, W., Zhang, Y., Chen, W., and Zhang, W., Clin. Nutr., 2021, vol. 40, no. 5, p. 3559. https://doi.org/10.1016/j.clnu.2020.12.010

    Article  CAS  PubMed  Google Scholar 

  16. de Almeida, G.R.C., Tavares, C.F.D., de Souza, A.M., de Sousa, T.S., Funayama, C.A.R., Barbosa, F., Tanus-Santos, J.E., and Gerlach, R.F., Sci. Total Environ., 2010, vol. 408, no. 7, p. 1551. https://doi.org/10.1016/j.scitotenv.2009.12.034

    Article  CAS  Google Scholar 

  17. Wang, D., Du, X., and Zheng, W., Toxicol. Lett., 2008, vol. 176, no. 1, p. 40. https://doi.org/10.1016/j.toxlet.2007.10.003

    Article  CAS  PubMed  Google Scholar 

  18. Olmedo, P., Pla, A., Hernandez, A.F., Lopez-Guarnido, O., Rodrigo, L., and Gil, F., Anal. Chim. Acta, 2010, vol. 659, nos. 1–2, p. 60. https://doi.org/10.1016/j.aca.2009.11.056

    Article  CAS  PubMed  Google Scholar 

  19. Novo, D.L., Mello, J.E., Rondan, F.S., Henn, A.S., Mello, P.A., and Mesko, M.F., Talanta, 2019, vol. 191, p. 415. https://doi.org/10.1016/j.talanta.2018.08.081

    Article  CAS  PubMed  Google Scholar 

  20. Savinov, S.S., Anisimov, A.A., and Drobyshev, A.I., J. Anal. Chem., 2016, vol. 71, no. 10, p. 1016. https://doi.org/10.1134/S1061934816080128

    Article  CAS  Google Scholar 

  21. Savinov, S.S. and Anisimov, A.A., J. Anal. Chem., 2020, vol. 75, no. 4, p. 453. https://doi.org/10.1134/S1061934820040139

    Article  CAS  Google Scholar 

  22. Drobyshev, A.I. and Emelina, O.I., J. Anal. Chem., 1999, vol. 54, no. 12, p. 1152.

    CAS  Google Scholar 

  23. Solomentseva, N.S. and Shuvaeva, O.V., J. Anal. Chem., 2007, vol. 62, no. 7, p. 645. https://doi.org/10.1134/S1061934807070064

    Article  CAS  Google Scholar 

  24. Drobyshev, A.I. and Emelina, O.I., J. Anal. Chem., 1996, vol. 51, no. 10, p. 958.

    CAS  Google Scholar 

  25. Drobyshev, A.I. and Savinov, S.S., Opt. Spectrosc., 2016, vol. 120, no. 2, p. 335. https://doi.org/10.1134/S0030400X16020077

    Article  CAS  Google Scholar 

  26. Drobyshev, A.I. and Savinov, S.S., J. Opt. Technol., 2014, vol. 81, no. 1, p. 33. https://doi.org/10.1364/JOT.81.000033

    Article  Google Scholar 

  27. Labusov, V.A., Inorg. Mater., 2009, vol. 45, no. 14, p. 1529. https://doi.org/10.1134/S0020168509140039

    Article  CAS  Google Scholar 

  28. Labusov, V.A., Garanin, V.G., and Shelpakova, I.R., J. Anal. Chem., 2012, vol. 67, no. 7, p. 632. https://doi.org/10.1134/S1061934812070040

  29. Garanin, V.G., Neklyudov, O.A., Petrochenko, D.V., Semenov, Z.V., Shatalov, I.G., and Pankratov, S.V., Zavod. Lab., Diagn. Mater., 2012, vol. 78, no. 1(2), p. 69.

  30. Drobyshev, A.I. and Savinov, S.S., Instrum. Exp. Tech., 2013, vol. 56, no. 6, p. 693. https://doi.org/10.1134/S0020441213050138

    Article  Google Scholar 

  31. Drobyshev, A.I. and Savinov, S.S., Zavod. Lab., Diagn. Mater., 2015, no. 1(2), p. 142.

  32. Torok, T., Mika, J., and Gegus, E., Emission Spectrochemical Analysis, Budapest: Akademiai Kiado, 1978.

    Google Scholar 

  33. Notova, S.V., Ordzhonikidze, G.Z., and Nigmatullina, Yu.F., Vestnik Orenburg. Gos. Univ., 2003, no. 6, p. 146.

  34. Bardarov, K.V., Buchvarov, I., Yordanova, T., and Georgiev, P.A., Proc. SPIE, 2019, vol. 11332, 113320. https://doi.org/10.1117/12.2552209

    Article  Google Scholar 

  35. Vukolov, A.V., Spektral’nyi metod izmereniya temperatury plazmy. Laboratornyi praktikum (Spectral Method for Measuring Plasma Temperature: Laboratory Works), Tomsk: Tomsk. Politekh. Univ., 2008.

  36. Spektral’nyi analiz chistykh veshchestv (Spectral Analysis of Pure Substances), Zil’bershtein, Kh.I., Ed., St. Petersburg: Khimiya, 1994.

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Research Park of St. Petersburg State University “Center for Chemical Analysis and Materials Research” and VMK-Optoelektronika, whose equipment was used in the study.

Funding

The study was supported by the grant of the President of the Russian Federation, project no. MK-2476.2021.1.3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Savinov.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savinov, S.S., Drobyshev, A.I. Determination of Trace Elements in Biological Fluids by Arc Atomic Emission Spectrometry. J Anal Chem 77, 328–333 (2022). https://doi.org/10.1134/S1061934822010129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934822010129

Keywords:

Navigation