Skip to main content
Log in

Using Hypercrosslinked Polystyrene for the Multicomponent Solid-Phase Extraction of Residues of 63 Veterinary Preparations in Their Determination in Chicken Meat by High-Performance Liquid Chromatography–Tandem Mass Spectrometry

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Hypercrosslinked polystyrene is proposed for the multicomponent solid-phase extraction of residues of 63 veterinary preparations from various classes (sulfonamides, tetracyclines, quinolones, amphenicols, nitroimidazoles, β-lactams, macrolides, lincosamides, and pleuromutilins) in their determination in chicken meat by HPLC–tandem mass spectrometry. Sample preparation includes the extraction of analytes with a McIlvaine buffer solution, fat removal by extraction with hexane, and the further purification of the extracts on cartridges with hypercrosslinked polystyrene. The method ensures the quantitative extraction of analytes (recovery rates are from 83 to 117%) and good reproducibility (RSD ≤ 12%). Veterinary preparations were identified by the exact masses of analyte ions formed in electrospray ionization on switching positive and negative polarity. The matrix effect for all veterinary drugs was below 20%. The determination was carried out by the method of matrix calibration; the limits of detection and determination were 0.01–0.3 and 0.02–1 ng/g, respectively. An analysis of contaminated chicken meat samples showed that the results are in satisfactory agreement with the data obtained by the methods adopted in the Russian Federation for the determination of various groups of antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 1.
Fig. 1.
Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Ture, M., Fentie, T., and Regassa, B., J. Vet. Sci., 2019, vol. 13, no. 2, p. 555856.

    Google Scholar 

  2. Baynes, R.E., Dedonder, K., Kissell, L., Mzyk, D., Marmulak, T., Smith, G., and Riviere, J.E., Food Chem. Toxicol., 2016, vol. 88, p. 112.

    Article  CAS  Google Scholar 

  3. Beyene, T., J. Vet. Sci., 2016, vol. 1, no. 7, p. 285.

    Google Scholar 

  4. Stolker, A.A.M., Zuidema, T., Nielen, M.W.F., and Nielen, M.W.F., TrAC, Trends Anal. Chem., 2007, vol. 26, p. 967.

    Article  CAS  Google Scholar 

  5. Bogialli, S. and Di Corcia, A., Anal. Bioanal. Chem., 2009, vol. 395, no. 4, p. 947.

    Article  CAS  Google Scholar 

  6. Masiá, A., Suarez-Varela, M.M., Llopis-Gonzalez, A., and Picó, Y., Anal. Chim. Acta, 2016, vol. 936, p. 40.

    Article  Google Scholar 

  7. Rocca, L.M., Gentili, A., Pérez-Fernández, V., and Tomai, P., Food. Addit. Contam. Part A, 2017, vol. 34, p. 766.

    Google Scholar 

  8. Commission Regulation (EU) no. 37/2010 of December 22, 2009, on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin.

  9. Technical Regulations of the Customs Union (TR CU 034/2013) “On the safety of meat and meat products,” adopted by the Decision of the Council of the Eurasian Economic Commission on October 9, 2013, no. 68.

  10. Han, R.W., Zheng, N., Yu, Z.N., Wang, J., Xu, X.M., Qu, X.Y., Li, S.L., Zhang, Y.D., and Wang, J.Q., Food Chem., 2015, vol. 181, p. 119.

    Article  CAS  Google Scholar 

  11. Wang, J., Leung, D., Chow, W., Chang, J., and Wong, J.W., J. Agric. Food Chem., 2015, vol. 63, p. 9175.

    Article  CAS  Google Scholar 

  12. Amelin, V.G., Fedina, N.M., Podkolzin, I.V., and Korotkov, A.I., J. Anal. Chem., 2018, vol. 73, no. 6, p. 576.

    Article  CAS  Google Scholar 

  13. Amelin, V.G., Andoralov, A.M., Volkova, N.M., Korotkov, A.I., Nikeshina, T.B., Sidorov, I.I., and Timofeev, A.A., Analitika Kontrol’, 2015, vol. 19, no. 2, p. 189.

    Google Scholar 

  14. Amelin, V., Korotkov, A., and Andoralov, A., J. AOAC Int., 2016, vol. 99, no. 6, p. 1600.

    Article  CAS  Google Scholar 

  15. Chen, D., Yu, J., Tao, Y., Pan, Y., Xie, S., Huang, L., Peng, D., Wang, X., Wang, Y., Liu, Z., and Yuan, Z., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2016, vols. 1017–1018, p. 82.

    Article  Google Scholar 

  16. Kang, J., Park, S.J., Park, H.C., Hossain, M.A., Kim, M.A., Son, S.W., and Cho, B.H., Biotechnol. Appl. Biochem., 2017, vol. 182, no. 2, p. 635.

    Article  CAS  Google Scholar 

  17. Piatkowska, M., Gbylik-Sikorska, M., Gajda, A., Jedziniak, P., Bladek, T., Zmudzki, J., and Posyniak, A., Food Chem., 2017, vol. 229, p. 646.

    Article  CAS  Google Scholar 

  18. Wang, K., Lin, K., Huang, X., and Chen, M., J. Agric. Food Chem., 2018, vol. 65, p. 5064.

    Article  Google Scholar 

  19. Wang, C., Li, X., Yu, F., Wang, Y., Ye, D., Hu, X., Zhou, L., Du, J., and Xia, X., Food Chem., 2021, vol. 334, 127598.

    Article  CAS  Google Scholar 

  20. Peters, R.J., Bolck, Y.J., Rutgers, P., Stolker, A.A., and Nielen, M.W., J. Chromatogr. A, 2009, vol. 1216, no. 46, p. 8206.

    Article  CAS  Google Scholar 

  21. Azzouz, A. and Ballesteros, E., Food Chem., 2015, vol. 178, p. 63.

    Article  CAS  Google Scholar 

  22. Geis-Asteggiante, L., Lehotay, S.J., Lightfield, A.R., Dutko, T., Chilton, Ng., and Bluhm, L., J. Chromatogr. A, 2012, vol. 1258, p. 43.

    Article  CAS  Google Scholar 

  23. Schneider, M.J., Lehotay, S.J., and Lightfield, A.R., Anal. Bioanal. Chem., 2015, vol. 407, p. 4423.

    Article  CAS  Google Scholar 

  24. Tang, Y.Y., Lu, H.F., Lin, H.Y., Shin, Y.C., and Hwang, D.F., Food Anal. Methods, 2012, vol. 5, p. 1459.

    Article  Google Scholar 

  25. Zhang, Z., Li, X., Ding, S., Jiang, H., Shen, J., and Xia, X., Food Chem., 2016, vol. 204, p. 252.

    Article  CAS  Google Scholar 

  26. Kinsella, B., O’Mahony, J., Malone, E., Moloney, M., Cantwell, H., Furey, A., and Danaher, M., J. Chromatogr. A, 2009, vol. 1216, p. 7977.

    Article  CAS  Google Scholar 

  27. Berendsen, B.J.A., Stolker, L.A.A.M., Nielen, M.W.F., and Nielen, M.W.F., TrAC, Trends Anal. Chem., 2013, vol. 43, p. 229.

    Article  CAS  Google Scholar 

  28. Faraji, M., Yamini, Y., and Gholami, M., Chromatographia, 2019, vol. 82, p. 1207.

    Article  CAS  Google Scholar 

  29. Rossi, R., Saluti, G., Moretti, S., Diamanti, I., Giusepponi, D., and Galarini, R., Food. Addit. Contam. Part A, 2018, vol. 35, p. 241.

    Article  CAS  Google Scholar 

  30. Dmitrienko, S.G., Tikhomirova, T.I., Apyari, V.V., Tolmacheva, V.V., Kochuk, E.V., and Zolotov, Yu.A., J. Anal. Chem., 2018, vol. 73, p. 1053.

    Article  CAS  Google Scholar 

  31. Davankov, V.A. and Tsyurupa, M.P., Sverkhsshitye polistirol’nye sorbenty. Struktura, svoistva, primenenie (Hypercrosslinked Polystyrene Adsorbents: Structure, Properties, Application), Saarbruken: Palmarium Academic Publishing, 2012.

  32. Tsyurupa, M.P. and Davankov, V.A., React. Funct. Polym., 2002, vol. 53, p. 193.

    Article  CAS  Google Scholar 

  33. Tsyurupa, M.P., Blinnikova, Z.K., Proskurina, N.A., Pastukhov, A.V., Pavlova, L.A., and Davankov, V.A., Nanotechnol. Russ., 2009, vol. 4, 665.

    Article  Google Scholar 

  34. Tolmacheva, V.V., Yarykin, D.I., Serdiuk, O.N., Apyari, V.V., Dmitrienko, S.G., and Zolotov, Yu.A., React. Funct. Polym., 2018, vol. 131, p. 56.

    Article  CAS  Google Scholar 

  35. Dmitrienko, S.G., Kochuk, E.V., Tolmacheva, V.V., Apyari, V.V., and Zolotov, YuA., J. Anal. Chem., 2013, vol. 68, no. 10, p. 871.

    Article  CAS  Google Scholar 

  36. Udalova, A.Yu., Dmitrienko, S.G., Natchuk, S.V., Apyari, V.V., and Zolotov, Yu.A., J. Anal. Chem. 2015, vol. 70, no. 3, p. 292.

    Article  CAS  Google Scholar 

  37. Ferrer, C., Lozano, A., Agüera, A., Jiménez Girón, A., and Fernández-Alba, A.R., J. Chromatogr. A, 2011, vol. 1218, p. 7634.

    Article  CAS  Google Scholar 

  38. GOST (State Standard) 34533 2019: Food Products, Food Raw Materials. Method for Determination of Sulfonamides, Nitroimidazoles, Penicillins, Amphenicols by High-Performance Liquid Chromatography–Mass Spectrometry, Moscow: Standartinform, 2019.

  39. GOST (State Standard) 32797 2014: Food Products, Food Raw Materials. Method for Determination of the Quinolone Content by High-Performance Liquid Chromatography with Mass Spectrometry Detector, Moscow: Standartinform, 2015.

  40. GOST (State Standard) 34136 2017: Food Products, Food Raw Materials. Method for Determination of the Residual Content of Macrolides, Lincosamides and Pleuromutilins by High-Performance Liquid Chromatography–Mass Spectrometry, Moscow: Standartinform, 2018.

  41. GOST (State Standard) 31694 2012: Food Products, Food Raw Materials. Method for Determination of the Residues of Tetracycline Antibiotics by High-Performance Liquid Chromatography–Mass Spectrometry, Moscow: Standartinform, 2013.

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation and the Council under the President of the Russian Federation for state support of young scientists and leading scientific schools of the Russian Federation (project no. MD-1448.2021.1.3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Tolmacheva.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melekhin, A.O., Tolmacheva, V.V., Shubina, E.G. et al. Using Hypercrosslinked Polystyrene for the Multicomponent Solid-Phase Extraction of Residues of 63 Veterinary Preparations in Their Determination in Chicken Meat by High-Performance Liquid Chromatography–Tandem Mass Spectrometry. J Anal Chem 76, 946–959 (2021). https://doi.org/10.1134/S1061934821060046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934821060046

Keywords:

Navigation