Skip to main content
Log in

Structural and Electrokinetic Characteristics of High-Silica Porous Glasses in Nickel Chloride Solutions

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The structural (structural resistance coefficient, volume porosity, tortuosity coefficient, filtration coefficient, and specific surface area) and electrokinetic (specific electrical conductivity, streaming potential, and electrophoretic mobility of particles) characteristics of micro- and macroporous glasses prepared from sodium borosilicate two-phase glass have been studied in nickel chloride solutions with ionic strengths of 10–4–0.3 M. Obtained experimental data have been used to calculate the average pore radius, efficiency coefficient, and electrokinetic potential of the glasses. The dependences of the structural and electrokinetic characteristics of the porous glasses on counterion charge have been analyzed for a series Na+, Ni2+, and La3+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Mazurin, O.V., Roskova, G.P., Aver’yanov, V.I., and Antropova, T.V., Dvukhfaznye stekla: Struktura, svoistva, primenenie (Biphasic Glasses: Structure, Properties, and Application), Leningrad: Nauka, 1991.

  2. Enke, D., Janowski, F., and Schwieger, W., Microporous Mesoporous Mater., 2003, vol. 60, p. 19.

    Article  CAS  Google Scholar 

  3. Yairi, M. and Richter, C., Sens. Actuators, A, 2007, vol. 137, p. 350.

    Article  CAS  Google Scholar 

  4. Cheong, S.-W. and Mostovoy, M., Nat. Mater., 2007, vol. 6, p. 13.

    Article  CAS  Google Scholar 

  5. Evstrapov, A.A., Esikova, N.A., Rudnitskaja, G.E., and Antropova, T.V., Opt. Appl., 2008, vol. 38, p. 31.

    CAS  Google Scholar 

  6. Zhou, S., Jiang, N., Zhu, B., Yang, H., Ye, S., Lakshminarayana, G., Hao, J., and Qiu, J., Adv. Funct. Mater., 2008, vol. 18, p. 1407.

    Article  CAS  Google Scholar 

  7. Zhou, S., Lei, W., Jiang, N., Hao, J., Wu, E., Zeng, H., and Qiu, J., J. Mater. Chem., 2009, vol. 19, p. 4603.

    Article  CAS  Google Scholar 

  8. Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L., and Zhang, Q., J. Hazard. Mater., 2012, vols. 211–212, p. 317.

    Article  Google Scholar 

  9. He, F., Liao, Y., Lin, J., Song, J., Qiao, L., Cheng, Y., and Sugioka, K., Sensors (Basel), 2014, vol. 14, p. 19402.

    Article  CAS  Google Scholar 

  10. Rybak, A. and Kaszuwara, W., J. Alloys Compd., 2015, vol. 648, p. 205.

    Article  CAS  Google Scholar 

  11. Cizman, A., Rogacki, K., Rysiakiewicz-Pasek, E., Antropova, T., Pshenko, O., and Poprawski, R., J. Alloys Compd., 2015, vol. 649, p. 447.

    Article  CAS  Google Scholar 

  12. Podoynitsyn, S.N., Sorokina, O.N., and Kovarski, A.L., J. Magn. Magn. Mater., 2016, vol. 397, p. 51.

    Article  CAS  Google Scholar 

  13. Andreeva, Y.M., Sergeev, M.M., Zakoldaev, R.A., Gabysheva, U.E., Veiko, V.P., Kudryashov, S.I., Ionin, A.A., Vocanson, F., Itina, T.E., Antropova, T.V., and Medvedev, O.S., J. Laser Micro/Nanoeng., 2018, vol. 13, p. 193.

    CAS  Google Scholar 

  14. Antropova, T.V., Girsova, M.A., Anfimova, I.N., and Drozdova, I.A., J. Lumin., 2018, vol. 193, p. 29.

    Article  CAS  Google Scholar 

  15. Ermakova, L.E., Kuznetsova, A.S., Antropova, T.V., Volkova, A.V., and Anfimova, I.N., Colloid J., 2020, vol. 82, p. 262.

    Article  CAS  Google Scholar 

  16. Lidin, R.A., Andreeva, L.L., and Molochko, V.A., Konstanty neorganicheskikh veshchestv: Spravochnik (Constants of Inorganic Substances: Handbook), Moscow: Drofa, 2006.

  17. Zhdanov, S.P., Wiss. Z. Friedrich-Schiller-Univ. Jena, Math.-Naturwiss. Reihe, 1987, vol. 36, p. 817.

    CAS  Google Scholar 

  18. Antropova, T.V., Kalinina, S.V., Kostyreva, T.G., Drozdova, I.A., and Anfimova, I.N., Glass Phys. Chem., 2015, vol. 41, p. 14.

    Article  CAS  Google Scholar 

  19. Ermakova, L.E., Antropova, T.V., Volkova, A.V., Kuznetsova, A.S., Grinkevich, E.A., and Anfimo-va, I.N., Glass Phys. Chem., 2018, vol. 44, p. 269.

    Article  CAS  Google Scholar 

  20. Poluektov, N.S., Metody analiza po fotometrii plameni (Methods of Analysis by Flame Photometry), Moscow: Khimiya, 1967.

  21. Piryutko, M.M., Zh. Anal. Khim., 1970, vol. 25, p. 136.

    CAS  Google Scholar 

  22. Piryutko, M.M., Benediktova, N.V., and Korsak, L.F., Steklo Keram., 1981, no. 8, p. 30.

  23. Vasil'ev, V.P., Analiticheskaya khimiya (Analytical Chemistry), book 1: Titrimetricheskie i gravimetricheskie metody analiza (Titrimetric and Gravimetric Methods of Analysis), Moscow: Drofa, 2004.

  24. Ermakova, L.E., Volkova, A.V., Antropova, T.V., and Murtuzalieva, F.G., Colloid J., 2014, vol. 76, p. 546.

    Article  CAS  Google Scholar 

  25. Levine, S., Marriott, J.R., Neale, G., and Epstein, N., J. Colloid Interface Sci., 1975, vol. 52, p. 136.

    Article  Google Scholar 

  26. Ermakova, L.E., Grinkevich, E.A., Volkova, A.V., and Antropova, T.V., Colloid J., 2018, vol. 80, p. 492.

    Article  CAS  Google Scholar 

  27. Ermakova, L.E., Kuznetsova, A.S., Volkova, A.V., and Antropova, T.V., Colloids Surf. A, 2019, vol. 576, p. 91.

    Article  CAS  Google Scholar 

  28. Robinson, R.A. and Stokes, R.H., Electrolyte Solutions, Butterworths Sci. Publ., 1955.

    Google Scholar 

  29. Spravochnik khimika (Chemist’s Handbook), Nikol’skii, B.P., Ed., Moscow: Khimiya, 1965, vol. 3.

  30. Ermakova, L.E., Electrosurface phenomena in nanodispersed systems, Doctoral (Chem.) Dissertation, St. Petersburg: St. Petersburg State Univ., 2001.

  31. Volkova, A.V., Ermakova, L.E., Antropova, T.V., and Sidorova, M.P., Colloid J., 2010, vol. 72, p. 6.

    Article  CAS  Google Scholar 

  32. Ermakova, L.E., Sidorova, M.P., and Zhura, N.A., Kolloidn. Zh., 1995, vol. 57, p. 798.

    Google Scholar 

  33. Ermakova, L.E., Sidorova, M.P., and Bogdanova, N.F., Colloid J., 2006, vol. 68, p. 411.

    Article  CAS  Google Scholar 

  34. Ermakova, L.E., Grinkevich, E.A., Volkova, A.V., Kuznetsova, A.S., Kurilenko, L.N., and Antropova, T.V., Colloid J., 2019, vol. 81, p. 235.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was performed using the equipment of the Research Park of St. Petersburg State University (the Interdisciplinary Resource Center “Nanotechnologies” and “Cryogenic Department”). The porous glasses were prepared at the Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences (subject no. 0097-2019-0015). The chemical analysis of the glasses was performed by the group of analytical chemistry at the Laboratory of Physical Chemistry of Glass, Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-03-00544a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. E. Ermakova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Kirilin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ermakova, L.E., Kuznetsova, A.S., Antropova, T.V. et al. Structural and Electrokinetic Characteristics of High-Silica Porous Glasses in Nickel Chloride Solutions. Colloid J 83, 418–427 (2021). https://doi.org/10.1134/S1061933X21030042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X21030042

Navigation