Skip to main content
Log in

Features of Electrical Double Layers Formed Around Strongly Charged Nanoparticles Immersed in an Electrolyte Solution. The Effect of Ion Sizes

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Using the modified Poisson–Boltzmann (PB) theory, which includes restrictions on the maximum attainable concentration of ionic species in a solution Cmax determined by their effective sizes, the distributions of electrostatic potential φ(r) and ion concentration near a spherical nanoparticle with radius a immersed in a 1 : 1 electrolyte solution have been studied under the conditions of constant surface charge density σs. For weakly charged particles, the φ(r) profiles are almost independent of Cmax and coincide with the profile obtained in terms of the classical PB model. Surface potential |φs| gradually increases with a rise in |σs|. Far from the particle, when the potential becomes lower than its thermal value \({{\varphi }_{{\text{T}}}} = \frac{{kT}}{e}\) (k is the Boltzmann constant, T is the temperature, and e is the elementary charge), the potential decreases exponentially irrespective of the counterion sizes: \(\psi \left( r \right) = \frac{{\varphi \left( r \right)}}{{{{\varphi }_{{\text{T}}}}}} = {{\psi }_{{{\text{eff}}}}}\frac{a}{r}\exp \left( { - \kappa \left( {r - a} \right)} \right),\) where r is the distance from the particle center and κ is the reciprocal Debye radius. According to the classical PB theory, the growth of the surface charge leads to the saturation of \(\left| {{{\psi }_{{{\text{eff}}}}}} \right|~\left( { \to 4} \right),\) with the value of \(\left| {{{\psi }_{{\text{s}}}}} \right|\) obtained by solving the nonlinear PB equation being higher than \(\left| {{{\psi }_{{{\text{eff}}}}}} \right|.\) In the modified PB theory, which takes into account the size of electrolyte ions in the simplest form, this effect of saturation is absent. Now, \(\left| {{{\psi }_{{{\text{eff}}}}}} \right|\) depends on both the value of the surface charge and the sizes of counterions. Moreover, at a large size of counterions, \(\left| {{{\psi }_{{{\text{eff}}}}}} \right|\) substantially exceeds the corresponding value obtained by solving the nonlinear modified PB equation. The difference between the electrical double layer properties obtained by solving the classical and modified PB equations directly follows from the fact that the modified theory predicts the appearance of a condensed layer at a particle surface, with the concentration of counterions in this layer being equal to Cmax. Therewith, the thickness of the layer grows with increasing |σs| (at a constant size of the ions) and the size of the ions (at constant σs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Verwey, E.J.W. and Overbeek, J.Th.G., Theory of the Stability of Lyophobic Colloids, New York: Elsevier, 1948.

    Google Scholar 

  2. Delahay, P., Double Layer and Electrode Kinetics, New York: Wiley, 1965.

    Google Scholar 

  3. Derjaguin, B.V., Churaev, N.V., and Muller, V.M., Poverkhnostnye sily (Surface Forces), New York: Consultants Bureau, 1987.

  4. Andelman, D., in Handbook of Biological Physics, Lipowsky, R. and Sackmann, E., Eds., Amsterdam: Elsevier Science, 1995, vol. 1, Chap. 12.

    Google Scholar 

  5. Levin, Y., Rep. Prog. Phys., 2002, vol. 65, p. 1577.

    Article  CAS  Google Scholar 

  6. Lyklema, J., Fundamentals of Interface and Colloid Science, Amsterdam: Elsevier Academic, 2005.

    Google Scholar 

  7. Ohshima, H., in Nanolayer Research: Methodology and Technology for Green Chemistry, Amsterdam: Elsevier, 2017, Chap. 2.

    Google Scholar 

  8. Gisler, T., Schulz, S.F., Borkovec, M., Sticher, H., Schurtenberger, P., D’Aguanno, B., and Klein, R., J. Chem. Phys., 1994, vol. 101, p. 9924.

    Article  CAS  Google Scholar 

  9. Evers, M., Garbow, N., Hessinger, D., and Palberg, T., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1998, vol. 57, p. 6774.

    Article  CAS  Google Scholar 

  10. Fernandez-Nieves, A., Fernandez-Barbero, A., and Nieves, F.J., Langmuir, 2000, vol. 16, p. 4090.

    Article  CAS  Google Scholar 

  11. Quesada-Perez, M., Callejas-Fernandez, J., and Hidalgo-Alvarez, R., Adv. Colloid Interface Sci., 2002, vol. 95, p. 295.

    Article  CAS  Google Scholar 

  12. Oosawa, F., Polyelectrolytes, New York: Marcel Dekker, 1971.

    Google Scholar 

  13. Manning, G.S., J. Chem. Phys., 1969, vol. 51, p. 924.

    Article  CAS  Google Scholar 

  14. Manning, G.S., Ber. Bunsen-Ges. Phys. Chem., 1996, vol. 100, p. 909.

    Article  CAS  Google Scholar 

  15. Belloni, L., Colloids Surf. A, 1998, vol. 140, p. 227.

    Article  CAS  Google Scholar 

  16. Alexander, S., Chaikin, P.M., Grant, P., Morales, G.J., and Pincus, P., J. Chem. Phys., 1984, vol. 80, p. 5776.

    Article  CAS  Google Scholar 

  17. Manning, G.S., J. Phys. Chem. B, 2007, vol. 111, p. 8554.

    Article  CAS  Google Scholar 

  18. Ramanathan, G.V., J. Chem. Phys., 1988, vol. 88, p. 3887.

    Article  CAS  Google Scholar 

  19. Attard, P., J. Phys. Chem., 1995, vol. 99, p. 14174.

    Article  CAS  Google Scholar 

  20. Levin, Y., Barbosa, M.C., and Tamashiro, M.N., Europhys. Lett., 1998, vol. 41, p. 123.

    Article  CAS  Google Scholar 

  21. Bocquet, L., Trizac, E., and Aubouy, M., J. Chem. Phys., 2002, vol. 117, p. 8138.

    Article  CAS  Google Scholar 

  22. Crocker, J.C. and Grier, D.G., Phys. Rev. Lett., 1994, vol. 73, p. 352.

    Article  CAS  Google Scholar 

  23. Palberg, T., Monch, W., Bitzer, F., Piazza, R., and Bellini, T., Phys. Rev. Lett., 1995, vol. 74, p. 4555.

    Article  CAS  Google Scholar 

  24. Quesada-Perez, M., Callejas-Fernandez, J., and Hidalgo-Alvarez, R., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2000, vol. 61, p. 574.

    Article  CAS  Google Scholar 

  25. Quesada-Perez, M., Callejas-Fernandez, J., and Hidalgo-Alvarez, R., J. Colloid Interface Sci., 2001, vol. 233, p. 280.

    Article  CAS  Google Scholar 

  26. Gutsche, C., Keyser, U.F., Kegler, K., Kremer, F., and Linse, P., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2007, vol. 76, 031403.

    Article  CAS  Google Scholar 

  27. Antypov, D., Barbosa, M.C., and Holm, C., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2005, vol. 71, 061106.

    Article  Google Scholar 

  28. Biesheuvel, P.M. and Van Soestbergen, M., J. Colloid Interface Sci., 2007, vol. 316, p. 490.

    Article  CAS  Google Scholar 

  29. Lue, L., Zoeller, N., and Blankschtein, D., Langmuir, 1999, vol. 15, p. 3726.

    Article  CAS  Google Scholar 

  30. López-García, J.J., Aranda-Rascon, M.J., and Horno, J., J. Colloid Interface Sci., 2007, vol. 316, p. 196.

    Article  Google Scholar 

  31. López-García, J.J., Aranda-Rascon, M.J., Grosse, C., and Horno, J., J. Phys. Chem. B, 2010, vol. 114, p. 7548.

    Article  Google Scholar 

  32. Borukhov, I., J. Polym. Sci. B: Polym. Phys., 2004, vol. 42, p. 3598.

    Article  CAS  Google Scholar 

  33. Borukhov, I., Andelman, D., and Orland, H., Electrochim. Acta, 2000, vol. 46, p. 221.

    Article  CAS  Google Scholar 

  34. López-García, J.J., Horno, J., and Grosse, C., Curr. Opin. Colloid Interface Sci., 2016, vol. 24, p. 23.

    Article  Google Scholar 

  35. Dolinnyi, A.I., Colloid J., 2018, vol. 80, p. 663.

    Article  Google Scholar 

Download references

Funding

This work was performed within the framework of a state order to the Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Dolinnyi.

Additional information

Translated by A. Kirilin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolinnyi, A.I. Features of Electrical Double Layers Formed Around Strongly Charged Nanoparticles Immersed in an Electrolyte Solution. The Effect of Ion Sizes. Colloid J 81, 642–649 (2019). https://doi.org/10.1134/S1061933X19060048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X19060048

Navigation