Skip to main content
Log in

Statistics corresponding to classical thermodynamics. Construction of isotherms

  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

We provide a detailed explanation of the physical meaning of some concepts used in the new statistics corresponding to thermodynamics, including the notions of locally ideal gas, number of collective degrees of freedom, and jamming factor. The equation of state is treated as a surface in three-dimensional space, and the spinodal is viewed as an Arnold catastrophe for a quasistatic process. We show that the parameters derived according to the new statistics completely coincide with the parameters of the van der Waals gas and also make a comparison with nitrogen. Directions of research are outlined for the construction of statistics in mesoscopic physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. B. Kadomtsev, Dynamics and Information (Editorial Board of the journal Uspekhi Fiz. Nauk, Moscow, 1999).

    Google Scholar 

  2. B. F. Porshnev, On the Beginning of Human History: Problems of Parapsychology (Mysl’, Moscow, 1974) [in Russian].

    Google Scholar 

  3. V. P. Maslov, “Supercritical and Critical States of Fluids: New Distribution and Main Invariants,” Math. Notes 96(5), 732–738 (2014).

    Article  Google Scholar 

  4. V. P. Maslov, “Two-Fluid Picture of Supercritical Phenomena,” Teoret. Mat. Fiz. 180(3), 394–432 (2014) [Theoret. and Math. Phys. 180 (3), 1095–1128 (2014)].

    Article  Google Scholar 

  5. V. P. Maslov, “Calculation of the Number of Collective Degrees of Freedom and of the Admissible Cluster Size for Isotherms in the Van-der-Waals Model in Supercritical States,” Russian J. Math. Phys. 21(4), 494–503 (2014).

    Article  ADS  Google Scholar 

  6. I. A. Kvasnikov, Thermodynamics and Statistical Physics (Vol. 3: Theory of Nonequilibrium Systems, URSS, Moscow, 2003) [in Russian].

    Google Scholar 

  7. N. N. Bogolyubov, “Problems of Dynamic Theory in Statistical Physics,” Selected Papers in Three Volumes, vol. 2, 99–196 (Naukova Dumka, Kiev, 1970) [in Russian].

    Google Scholar 

  8. V. P. Maslov, “Undistinguishing Statistics of Objectively Distinguishable Objects: Thermodynamics and Superfluidity of Classical Gas,” Math. Notes 94(5), 722–813 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  9. E. M. Apfelbaum, V. S. Vorob’ev, “Regarding the Universality of Some Consequences of the van der Waals Equation in the Supercritical Domain,” J. Phys. Chem. B 117(11), 7750–7755 (2013).

    Article  Google Scholar 

  10. J. E. Bayfield, Quantum Evolution (John Wiley & Sons, Inc, 1999).

    Google Scholar 

  11. M. de Gosson, The Principles of Newtonian and Quantum Mechanics (Imperial College Press, London, 2001).

    Book  MATH  Google Scholar 

  12. V. P. Maslov, “Violation of Carathéodory Axioms at the Critical Point of a Gas. Frenkel Point as a Critical Point of the Transition “Liquid-Amorphous Solid” in the Region of Negative Pressure,” Math. Notes 96(6), 977–982 (2014).

    Article  Google Scholar 

  13. V. P. Maslov, “On New Ideal (Noninteracting) Gases in Supercritical Thermodynamics,” Mat. Zametki 97(1), 85–102 (2015) [Math. Notes 97 (1), 85–99 (2015)].

    Article  Google Scholar 

  14. D. Yu. Ivanov, Critical Behavior of Non-ideal Systems (Wiley-VCH, 2008).

    Book  MATH  Google Scholar 

  15. R. Feynman and A. Hibbs, Quantum Mechanics and Path Integrals (New York, 1965; Mir, Moscow, 1968).

    MATH  Google Scholar 

  16. V. P. Maslov, Asymptotic Methods and Perturbation Theory (Nauka, Moscow, 1988) [in Russian].

    MATH  Google Scholar 

  17. V. I. Arnold, Catastrophe Theory (Nauka, Moscow, 1990).

    Google Scholar 

  18. E. M. Apfelbaum, V. S. Vorob’ev, “Correspondence Between the Critical and the Zeno-Line Parameters for Classical and Quantum Liquids,” J.Phys.Chem. B 113(11), 3521–3526 (2009).

    Article  Google Scholar 

  19. L. D. Landau and E. M. Lifshits, Statistical Physics (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  20. P. Erdős, J. Lehner, “The Distribution of the Number of Summands in the Partitions of a Positive Integer,” Duke Math. J. 8(2), 335–345 (June 1941).

    Article  MathSciNet  Google Scholar 

  21. V. P. Maslov, “Old Mathematical Errors in Statistical Physics,” Russian J. Math. Phys. 20(2), 214–229 (2013).

    Article  ADS  MATH  Google Scholar 

  22. S. G. Gindikin, Tales about Physicists and Mathematicians (MTsNMO, Moscow, 2001).

    Google Scholar 

  23. V.P. Maslov, Daring to Touch Radha (Academic Express, Lviv, 1993); also on http://viktor.maslovs.co.uk/en/home/articles/hist/my_hist.

    Google Scholar 

  24. B. Ya. Frenkel, Yakov Il’ich Frenkel (Nauka Publ., Moscow-Leningrad, 1966) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Maslov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslov, V.P. Statistics corresponding to classical thermodynamics. Construction of isotherms. Russ. J. Math. Phys. 22, 53–67 (2015). https://doi.org/10.1134/S1061920815010082

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920815010082

Keywords

Navigation