Skip to main content
Log in

Wideband supercontinuum generation in tapered tellurite microstructured fibers

  • Fiber Optics
  • Published:
Laser Physics

Abstract

Enhanced soliton trapping of dispersive waves in a tapered tellurite microstructured fiber pumped by a 1556 nm femtosecond fiber laser is demonstrated. The short wavelength edge of supercontinuum light is extended from 960 to 600 nm after tapering the tellurite microstructured fiber, which is caused by the enhanced soliton trapping of dispersive waves owing to the changing group velocities in tapered fibers. Wide-band supercontinuum light source spanning from 600 to >2400 nm is generated in tapered tellurite micro-structured fibers. Our experimental and simulated results show that short length (several centimeters) zero-dispersion-wave length decreasing highly nonlinear fiber has a potential for generating wideband supercontinuum light source expanding from visible to mid-infrared region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. R. Alfano and S. L. Shapiro, Phys. Rev. Lett. 24, 584 (1970).

    Article  ADS  Google Scholar 

  2. R. R. Alfano, The Supercontinuum Laser Source: Fundamentals with Updated References (Springer, New York, 2006).

    Google Scholar 

  3. J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).

    Article  ADS  Google Scholar 

  4. D. V. Skyabin and A. Y. Gorbach, Rev. Mod. Phys. 82, 1287 (2010).

    Article  ADS  Google Scholar 

  5. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. A. Atkin, Opt. Lett. 21, 1547 (1996).

    Article  ADS  Google Scholar 

  6. P. St. J. Russell, J. Lightwave Technol. 24, 4729 (2006).

    Article  ADS  Google Scholar 

  7. R. Buczynski, D. Pysz, T. Martynkien, D. Lorenc, I. Kujawa, T. Nasilowski, F. Berghmans, H. Thienpont, and R. Stepien, Laser Phys. Lett. 6, 575 (2009).

    Article  ADS  Google Scholar 

  8. N. I. Zhavoronkov, Laser Phys. Lett. 6, 806 (2009).

    Article  ADS  Google Scholar 

  9. A. M. Zheltikov, Laser Phys. Lett. 1, 220 (2004).

    Article  ADS  Google Scholar 

  10. M. L. Hu, C. Y. Wang, L. Chai, Y. F. Li, K. V. Dukel’skii, A. V. Khokhlov, V. S. Shevandin, Yu. N. Kondrat’ev, and A. M. Zheltikov, Laser Phys. Lett. 1, 299 (2004).

    Article  ADS  Google Scholar 

  11. V. P. Mitrokhin, A. A. Ivanov, A. B. Fedotov, M. V. Alfimov, K. V. Dukel’skii, A. V. Khokhlov, V. S. Shevandin, Yu. N. Kondrat’ev, A. A. Podshivalov, and A. M. Zheltikov, Laser Phys. Lett. 4, 529 (2007).

    Article  ADS  Google Scholar 

  12. D. A. Sidorov-Biryukov, K. A. Kudinov, A. A. Podshivalov, and A. M. Zheltikov, Laser Phys. Lett. 7, 355 (2010).

    Article  ADS  Google Scholar 

  13. E. Vater, G. Bergner, D. Akimov, S. Schlücker, H. Bartelt, B. Dietzek, and J. Popp, Laser Phys. Lett. 6, 639 (2009).

    Article  ADS  Google Scholar 

  14. M. H. Abu Bakar, M. A. Mahdi, M. Mokhtar, A. F. Abas, and N. Md. Yusoff, Laser Phys. Lett. 6, 602 (2009).

    Article  ADS  Google Scholar 

  15. M. E. Fermann and I. Hartl, Laser Phys. Lett. 6, 11 (2009).

    Article  ADS  Google Scholar 

  16. B.-W. Liu, M.-L. Hu, X.-H, Fang, Y.-Z. Wu, Y.-J. Song, L. Chai, C.-Y. Wang, and A. M. Zheltikov, Laser Phys. Lett. 6, 44 (2009).

    Article  ADS  Google Scholar 

  17. S. M. Kobtsev and S. V. Kukarin, Laser Phys. 20, 372 (2010).

    Article  ADS  Google Scholar 

  18. S. M. Kobtsev, S. V. Kukarin, and S. V. Smirnov, Laser Phys. 20, 375 8 (2010).

    Google Scholar 

  19. A. V. Andrianov, S. V. Muraviev, A. V. Kim, and A. A. Sysoliatin, Laser Phys. 19, 2014 (2009).

    Article  ADS  Google Scholar 

  20. E. A. Kuzin, O. Pottiez, M. Bello-Jimenez, B. Ibarra-Escamilla, A. Flores-Rosas, and M. Durán-Sánchez, Laser Phys. 19, 876 (2009).

    Article  ADS  Google Scholar 

  21. J. M. Stone and J. C. Knight, Opt. Express 16, 2670 (2008).

    Article  ADS  Google Scholar 

  22. J. C. Travers, S. V. Popov, and J. R. Taylor, Opt. Lett. 30, 3132 (2005).

    Article  ADS  Google Scholar 

  23. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, Opt. Express 14, 5715 (2006).

    Article  ADS  Google Scholar 

  24. Y. Gu, L. Zhan, D.-D. Deng, Y.-X. Wang and Y.-X. Xia, Laser Phys. 20, 1459 (2010).

    Article  ADS  Google Scholar 

  25. J. C. Travers and J. R. Taylor, Opt. Lett. 34, 115 (2009).

    Article  ADS  Google Scholar 

  26. J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge Univ., Cambridge, 2010).

    Book  Google Scholar 

  27. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, Jr., M. J. Freeman, M. Poulain, and G. Mazé, Opt. Lett. 31, 2553 (2006).

    Article  ADS  Google Scholar 

  28. R. Buczynski, H. T. Bookey, D. Pysz, R. Stepien, I. Kujawa, J. E. McCarthy, A. J. Waddie, A. K. Kar, and M. R. Taghizadeh, Laser Phys. Lett. 7, 666 (2010).

    Article  ADS  Google Scholar 

  29. X. Feng, W. H. Loh, J. C. Flanagan, A. Camerlingo, S. Dasgupta, P. Petropoulos, P. Horak, K. E. Frampton, N. M. White, J. H. V. Price, H. N. Rutt, and D. J. Richardson, Opt. Express 16, 13651 (2008).

    Article  ADS  Google Scholar 

  30. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, Opt. Express 16, 7161–7168 (2008).

    Article  ADS  Google Scholar 

  31. G. Qin, M. Liao, C. Chaudhari, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, Opt. Lett. 35, 58–60 (2010).

    Article  ADS  Google Scholar 

  32. D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, Opt. Lett. 33, 660 (2008).

    Article  ADS  Google Scholar 

  33. J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, IEEE J. Sel. Top. Quantum Electron. 15, 114 (2009).

    Article  Google Scholar 

  34. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, Appl. Phys. Lett. 95, 16110, 03–1 (2009).

    Google Scholar 

  35. G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, J. Appl. Phys. 107, 043108–1 (2010).

    Article  ADS  Google Scholar 

  36. G. Qin, R. Jose, and Y. Ohishi, J. Appl. Phys. 101, 093109–1 (2007).

    Article  ADS  Google Scholar 

  37. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, Phys. Rev. Lett. 88, 173901–173901 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Qin.

Additional information

Original Text © Astro, Ltd., 2011.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, G.S., Yan, X., Liao, M. et al. Wideband supercontinuum generation in tapered tellurite microstructured fibers. Laser Phys. 21, 1115–1121 (2011). https://doi.org/10.1134/S1054660X11110247

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X11110247

Keywords

Navigation