Skip to main content
Log in

Wave Propagation in Functionally-Graded Nanoplates Embedded in a Winkler–Pasternak Foundation with Initial Stress Effect

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

This paper presents the analysis of wave propagation in functionally-graded (FG) nanoplates on a Winkler–Pasternak foundation. The investigation is carried out in the framework of nonlocal elasticity theory and a new four-unknown higher-order displacement theory including indeterminate integral terms. Hamilton’s principle and Navier’s method are used to obtain the frequency relations of FG nanoplates for different conditions by solving an eigenvalue problem. The obtained results for the frequency and phase velocity of wave propagation in an FG nanoplate are compared with recent outcomes of similar research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

REFERENCES

  1. Yamanouchi, M. and Koizumi, M., Functionally Gradient Materials, in Proc. I Int. Symp. on Functionally Graded Materials, Sendai, Japan, 1991.

  2. Bouazza, M., Antar, K., Amara, K., Benyoucef, S., and Adda Bedia, E.A., Influence of Temperature on the Beams Behavior Strengthened by Bonded Composite Plates, Geomech. Eng., 2019, vol. 8, no. 5, pp. 555–566. https://doi.org/10.12989/GAE.2019.18.5.555

    Article  Google Scholar 

  3. Aghababaei, R. and Reddy, J.N., Nonlocal Third-Order Shear Deformation Plate Theory with Application to Bending and Vibration of Plates, J. Sound Vib., 2009, vol. 326, pp. 277–289. https://doi.org/10.1016/j.jsv.2009.04.044

    Article  ADS  Google Scholar 

  4. Hedayatrasa, S., Bui, T.Q., Zhang, C., and Wah Lim, C., Numerical Modeling of Wave Propagation in Functionally Graded Materials Using Time-Domain Spectral Chebyshev Elements, J. Comput. Phys., 2014, vol. 258, pp. 381–404. https://doi.org/10.1016/j.jcp.2013.10.037

    Article  ADS  MathSciNet  Google Scholar 

  5. Abdelmalek, A., Bouazza, M., Zidour, M., and Benseddiq, N., Hygrothermal Effects on the Free Vibration Behavior of Composite Plate Using nth-Order Shear Deformation Theory: A Micromechanical Approach, Iran. J. Sci. Tech. Trans. Mech. Eng., 2019, vol. 43, no. 1, pp. 61–73. https://doi.org/10.1007/s40997-017-0140-y

  6. Wang, Y.Z., Li, FM., and Kishimoto, K., Scale Effects on Flexural Wave Propagation in Nanoplate Embedded in Elastic Matrix with Initial Stress, Appl. Phys. A, 2010, vol. 99, pp. 907–911. https://doi.org/10.1007/s00339-010-5666-4

    Article  ADS  Google Scholar 

  7. Guo, P.F., Zhang, L.W., and Liew, K.M., Numerical Analysis of Generalized Regularized Long Wave Equation Using the Element-Free Kp-Ritz Method, Appl. Math. Comput., 2014, vol. 240, pp. 91–101. https://doi.org/10.1016/j.amc.2014.04.023

    Article  MathSciNet  Google Scholar 

  8. Karami, B., Janghorban, M., and Tounsi, A., Wave Propagation of Functionally Graded Anisotropic Nanoplates Resting on Winkler–Pasternak Foundation, Struct. Eng. Mech., 2019, vol. 70, no. 1, pp. 55–66. https://doi.org/10.12989/sem.2019.70.1.055

    Article  Google Scholar 

  9. Ebrahimi, F. and Seyfi, A., Studying Propagation of Wave of Metal Foam Rectangular Plates with Graded Porosities Resting on Kerr Substrate in Thermal Environment Via Analytical Method, Waves Random Complex Media, 2022, vol. 32, no. 2, pp. 832–855. https://doi.org/10.1080/17455030.2020.1802531

    Article  ADS  MathSciNet  Google Scholar 

  10. Tahir, S.I., Chikh, A., Tounsi, A., Al-Osta, M.A., Al-Dulaijan, S.U., and Al-Zahrani, M.M., Wave Propagation Analysis of a Ceramic-Metal Functionally Graded Sandwich Plate with Different Porosity Distributions in a Hygro-Thermal Environment, Compos. Struct., 2021, vol. 269, p. 114030. https://doi.org/10.1016/j.compstruct.2021.114030

    Article  Google Scholar 

  11. Zaitoun, M.W., Chikh, A., Tounsi, A., Sharif, A., Al-Osta, M.A., Al-Dulaijan, S.U., and Al-Zahrani, M.M., An Efficient Computational Model for Vibration Behavior of a Functionally Graded Sandwich Plate in a Hygrothermal Environment with Viscoelastic Foundation Effects, Eng. Comput., 2021. https://doi.org/10.1007/s00366-021-01498-1

  12. Belmahi, S., Zidour, M., Meradjah, M., Bensattalah, T., and Dihaj, A., Analysis of Boundary Conditions Effects on Vibration of Nanobeam in a Polymeric Matrix, Struct. Eng. Mech., 2018, vol. 67, no. 5, pp. 517–525. https://doi.org/10.12989/sem.2018.67.5.517

    Article  Google Scholar 

  13. Naceri, M., Zidour, M., Semmah, A., Houari, M.S.A, Benzair, A., and Tounsi, A., Sound Wave Propagation in Armchair Single Walled Carbon Nanotubes under Thermal Environment, J. Appl. Phys., 2011, vol. 110, p. 124322. https://doi.org/10.1063/1.3671636

    Article  ADS  Google Scholar 

  14. Becheri, T., Amara, K., Bouazza, M., and Benseddiq, N., Buckling of Symmetrically Laminated Plates Using nth-Order Shear Deformation Theory with Curvature Effects, Steel Compos. Struct., 2016, vol. 21, no. 6, pp. 1347–1368. https://doi.org/10.12989/SCS.2016.21.6.1347

  15. Bouazza, M. and Zenkour, A.M., Free Vibration Characteristics of Multilayered Composite Plates in a Hygrothermal Environment Via the Refined Hyperbolic Theory, Eur. Phys. J. Plus., 2018, vol. 133, p. 217. https://doi.org/10.1140/epjp/i2018-12050-x

    Article  Google Scholar 

  16. Bouazza, M., Becheri, T., Boucheta, A., and Benseddiq, N., Thermal Buckling Analysis of Nanoplates Based on Nonlocal Elasticity Theory with Four-Unknown Shear Deformation Theory Resting on Winkler–Pasternak Elastic Foundation, Int. J. Comput. Meth. Eng. Sci. Mech., 2016, vol. 17, no. 5–6, pp. 362–373. https://doi.org/10.1080/15502287.2016.1231239

    Article  Google Scholar 

  17. Frikha, A., Zghal, S., and Dammak, F., Dynamic Analysis of Functionally Graded Carbon Nanotubes-Reinforced Plate and Shell Structures Using a Double Directors Finite Shell Element, Aerospace Sci. Tech., 2018, vol. 78, pp. 438–451. https://doi.org/10.1016/j.ast.2018.04.048

    Article  Google Scholar 

  18. Bouazza, M. and Zenkour, A.M., Hygrothermal Environmental Effect on Free Vibration of Laminated Plates Using nth-Order Shear Deformation Theory, Waves Random Complex Media, 2021. https://doi.org/10.1080/17455030.2021.1909173

  19. Ezzin, H., Mkaoir, M., Arefi, M., Qian, Z., and Das, R., Analysis of Guided Wave Propagation in Functionally Graded Magneto-Electro Elastic Composite, Waves Random Complex Media, 2021. https://doi.org/10.1080/17455030.2021.1968541

  20. Bouazza, M., Kenouza, Y., Benseddiq, N., and Zenkour, A.M., A Two-Variable Simplified nth-Higher-Order Theory for Free Vibration Behavior of Laminated Plates, Compos. Struct., 2017, vol. 182, pp. 533–541. https://doi.org/10.1016/j.compstruct.2017.09.041

  21. Bouazza, M. and Zenkour, A.M., Vibration of Carbon Nanotube-Reinforced Plates Via Refined nth-Higher-Order Theory, Arch. Appl. Mech., 2020, vol. 90, pp. 1755–1769. https://doi.org/10.1007/s00419-020-01694-3

  22. Phuong, N.T., Nam, V.H., Trung, N.T., Duc, V.M., Loi, N.V., Thinh, N.D., and Tu, P.T., Thermomechanical Postbuckling of Functionally Graded Graphene-Reinforced Composite Laminated Toroidal Shell Segments Surrounded by Pasternak’s Elastic Foundation, J. Thermoplast. Compos. Mater., 2021, vol. 34, no. 10, pp. 1380–1407. https://doi.org/10.1177/0892705719870593

    Article  Google Scholar 

  23. Bouazza, M., Becheri, T., Boucheta, A., and Benseddiq, N., Bending Behavior of Laminated Composite Plates Using the Refined Four-Variable Theory and the Finite Element Method, Earthq. Struct., vol. 17, no. 3, pp. 257–270. https://doi.org/10.12989/EAS.2019.17.3.257

  24. Arani, A.G., Jamali, M., Mosayyebi, M., and Kolahchi, R., Analytical Modeling of Wave Propagation in Viscoelastic Functionally Graded Carbon Nanotubes Reinforced Piezoelectric Microplate under Electro-Magnetic Field, Proc. Inst. Mech. Eng. N. J. Nanomater. Nanoeng. Nanosyst., 2015, pp. 17–33. https://doi.org/10.1177/1740349915614046

  25. Zenkour, A.M. and Sobhy, M., Axial Magnetic Field Effect on Wave Propagation in Bi-Layer FG Graphene Platelet-Reinforced Nanobeams, Eng. Comput., 2021. https://doi.org/10.1007/s00366-020-01224-3

  26. Sobhy, M. and Zenkour, A.M., Wave Propagation in Magneto-Porosity FG Bi-Layer Nanoplates Based on a Novel Quasi-3D Refined Plate Theory, Waves Random Complex Media, 2021, vol. 31, no. 5, pp. 921–941. https://doi.org/10.1080/17455030.2019.1634853

    Article  ADS  Google Scholar 

  27. Mehar, K., Mahapatra, T.R., Panda, S.K., Katariya, P.V., and Tompe, U.K., Finite-Element Solution to Nonlocal Elasticity and Scale Effect on Frequency Behavior of Shear Deformable Nanoplate Structure, J. Eng. Mech., 2018, vol. 144, no. 9, p. 04018094. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001519

    Article  Google Scholar 

  28. Abazid, M.A., Zenkour, A.M., and Sobhy, M., Wave Propagation in FG Porous GPLs-Reinforced Nanoplates under In-Plane Mechanical Load and Lorentz Magnetic Force Via a New Quasi 3D Plate Theory, Mech. Based Design Struct. Mach., 2021, vol. 53, no. 1, pp. 11–22. https://doi.org/10.1080/15397734.2020.1769651

    Article  Google Scholar 

  29. Shariati, M., Shishesaz, M., Mosalmani, R., and Roknizadeh, S., Size Effect on the Axisymmetric Vibrational Response of ‎Functionally Graded Circular Nano-Plate Based on the Nonlocal Stress-Driven Method, J. Appl. Comput. Mech., 2022, vol. 8, no. 3, pp. 962–980. https://doi.org/10.22055/JACM.2021.38131.3159

    Article  Google Scholar 

  30. Ahmad Pour, M., Golmakani, M., and Malikan, M., Thermal Buckling Analysis of Circular Bilayer Graphene Sheets Resting on an Elastic Matrix Based on Nonlocal Continuum Mechanics, J. Appl. Comput. Mech., 2021, vol. 7, no. 4, pp. 1862–1877. https://doi.org/10.22055/JACM.2019.31299.1859

    Article  Google Scholar 

  31. Kumar, Y., Gupta, A., and Tounsi, A., Size-Dependent Vibration Response of Porous Graded Nanostructure with FEM and Nonlocal Continuum Model, Adv. Nano Res., 2021, vol. 11, no. 1, pp. 1–17. https://doi.org/10.12989/ANR.2021.11.1.001

    Article  Google Scholar 

  32. Farajzadeh Ahari, M., and Ghadiri, M., Resonator Vibration of a Magneto-Electro-Elastic Nano-Plate Integrated with FGM Layer Subjected to the Nano Mass-Spring-Damper System and a Moving Load, Waves Random Complex Media, 2022. https://doi.org/10.1080/17455030.2022.2053233

  33. Bouazza, M., Zenkour, A.M., and Benseddiq, N., Closed-from Solutions for Thermal Buckling Analyses of Advanced Nanoplates According to a Hyperbolic Four-Variable Refined Theory with Small-Scale Effects, Acta Mech., 2018, vol. 229, pp. 2251–2265. https://doi.org/10.1007/s00707-017-2097-8

    Article  MathSciNet  Google Scholar 

  34. Saini, R., Ahlawat, N., Rai, P., and Khadimallah, M.A., Thermal Stability Analysis of Functionally Graded Non-Uniform Asymmetric Circular and Annular Nano Discs: Size-Dependent Regularity and Boundary Conditions, Eur. J. Mech. A. Solids, 2022, vol. 94, p. 104607. https://doi.org/10.1016/j.euromechsol.2022.104607

    Article  ADS  Google Scholar 

  35. Bouazza, M., Amara, K., Zidour, M., Abedlouahed, T., and El Abbas, A.B., Thermal Effect on Buckling of Multiwalled Carbon Nanotubes Using Different Gradient Elasticity Theories, Nanosci. Nanotech., 2014, vol. 4, no. 2, pp. 27–33. https://doi.org/10.1016/j.egypro.2014.06.078

    Article  Google Scholar 

  36. Faghidian, S.A., Higher Order Mixture Nonlocal Gradient Theory of Wave Propagation, Math. Meth. Appl. Sci., 2020. https://doi.org/10.1002/mma.6885

  37. Barretta, R., Faghidian, S.A., and Marotti de Sciarra, F., Aifantis Versus Lam Strain Gradient Models of Bishop Elastic Rods, Acta Mech., 2019, vol. 230, pp. 2799–2812. https://doi.org/10.1007/s00707-019-02431-w

    Article  MathSciNet  Google Scholar 

  38. Reza Barati, M., Nadhim, M.F., and Zenkour, A.M., Dynamic Response of Nanobeams Subjected to Moving Nanoparticles and Hygro-Thermal Environments Based on Nonlocal Strain Gradient Theory, Mech. Adv. Mater. Struct., 2019, vol. 26, no. 19, pp. 1661–1669. https://doi.org/10.1080/15376494.2018.1444234

    Article  Google Scholar 

  39. Zhang, C., Eyvazian, A., Alkhedher, M., Alwetaishi, M., and Ameer Ahammad, N., Modified Couple Stress Theory Application to Analyze Mechanical Buckling Behavior of Three-Layer Rectangular Microplates with Honeycomb Core and Piezoelectric Face Sheets, Compos. Struct., 2022, vol. 292, p. 115582. https://doi.org/10.1016/j.compstruct.2022.115582

    Article  Google Scholar 

  40. Akavci, S.S. and Tanrikulu, A.H., Buckling and Free Vibration Analyses of Laminated Composite Plates by Using Two New Hyperbolic Shear Deformation Theories, Mech. Compos. Mater., 2008, vol. 44, no. 2, pp. 217–230. https://doi.org/10.1007/s11029-008-9004-2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bouazza.

Additional information

Translated from Fizicheskaya Mezomekhanika, 2023, Vol. 26, No. 1, pp. 47–59.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ellali, M., Bouazza, M. & Zenkour, A.M. Wave Propagation in Functionally-Graded Nanoplates Embedded in a Winkler–Pasternak Foundation with Initial Stress Effect. Phys Mesomech 26, 282–294 (2023). https://doi.org/10.1134/S1029959923030049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959923030049

Keywords:

Navigation