Skip to main content
Log in

Mesomechanical Investigation of the Relationship between the Length of the Fracture Process Zone and Crack Extensions in Concrete

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

This paper deals with a mesomechanical modeling of fracture in concrete like quasi-brittle materials. The paper seeks to provide insight regarding the variation of the fracture process zone (FPZ) length during the cracking process. The correlation between the FPZ length and the crack extension is also investigated. The FPZ variation is investigated through the evolution of cohesive tangential stresses along the crack path of different notched beams under three-point bending tests. The concept of equivalent linear elastic fracture mechanics is then employed to compute the crack extensions. The mesoscale investigation shows that the relationship between the FPZ length and the crack length is non linear. Furthermore, the numerical crack extensions are used to investigate the R-curve. It is shown that the R-curve is size-dependent and notch-sensitive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.

Similar content being viewed by others

REFERENCES

  1. Barenblatt, G.I., Concerning Equilibrium Cracks Forming During Brittle Fracture. The Stability of Isolated Cracks. Relationships with Energetic Theories, J. Appl. Math. Mech., 1959, vol. 23, no. 5, pp. 1273–1282.

  2. Dugdale, D.S., Yielding of Steel Sheets Containing Slits, J. Mech. Phys. Solids, 1960, vol. 8, no. 2, pp. 100–104.

  3. Hillerborg, A., Modéer, M., and Petersson, P.E., Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements, Cem. Concr. Res., 1976, vol. 6, no. 6, pp. 773–782.

  4. Bažant, Z.P. and Oh, B.H., Crack Band Theory for Fracture of Concrete, Mater. Struct., 1983, vol. 16, no. 3, pp. 155–177.

  5. Cedolin, L., Poli, S.D., and Iori, I., Experimental Determination of the Fracture Process Zone in Concrete, Cem. Concr. Res., 1983, vol. 13, no. 4, pp. 557–567.

  6. Shah, S.P., Experimental Methods for Determining Fracture Process Zone and Fracture Parameters, Eng. Fract. Mech., 1990, vol. 35, no. 1–3, pp. 3–14.

  7. Wu, Z., Rong, H., Zheng, J., Xu, F., and Dong, W., An Experimental Investigation on the FPZ Properties in Concrete Using Digital Image Correlation Technique, Eng. Fract. Mech., 2011, vol. 78, no. 17, pp. 2978–2990.

  8. Grégoire, D., Verdon, L., Lefort, V., Grassl, P., Saliba, J., Regoin, J.-P., Loukili, A., and Pijaudier-Cabot, G., Mesoscale Analysis of Failure in Quasi-Brittle Materials: Comparison between Lattice Model and Acoustic Emission Data, Int. J. Numer. Anal. Meth. Geomech., 2015, vol. 39, no. 15, pp. 1639–1664.

  9. Aissaoui, N. and Matallah, M., Numerical and Analytical Investigation of the Size-Dependency of the FPZ Length in Concrete, Int. J. Fract., 2017, vol. 205, no. 2, pp. 127–138.

  10. Grassl, P., Grégoire, D., Rojas, L., and Pijaudier-Cabot, G., Meso-Scale Modelling of the Size Effect on the Fracture Process Zone of Concrete, Int. J. Solids Struct., 2012, vol. 49, no. 13, pp. 1818–1827.

  11. Volegov, P.S., Gribov, D.S., and Trusov, P.V., Damage and Facture: Classical Continuum Theories, Phys. Mesomech., 2017, vol. 20, no. 2, pp. 157–173.

  12. Bažant, Z.P. and Jirásek, M., Nonlocal Integral Formulations of Plasticity and Damage: Survey of Progress, J. Eng. Mech., 2002, vol. 128, no. 11, pp. 1119–1149.

  13. Van Mier, J.G.M., Fracture Processes of Concrete, Lonon: CRC Press, 1997.

  14. Bažant, Z.P., Concrete Fracture Models: Testing and Practice, Eng. Fract. Mech., 2002, vol. 69, no. 2, pp. 165–205.

  15. Morel, S., Lespine, C., Coureau, J.-L., Planas, J., and Dourado, N., Bilinear Softening Parameters and Equivalent LEFM R-Curve in Quasibrittle Failure, Int. J. Solids Struct., 2010, vol. 47, no. 6, pp. 837–850.

  16. Morel, S. and Dourado, N., Size Effect in Quasibrittle Failure: Analytical Model and Numerical Simulations Using Cohesive Zone Model, Int. J. Solids Struct., 2011, vol. 48, no. 10, pp. 1403–1412.

  17. Xu, S. and Reinhardt, H.W., Crack Extension Resistance and Fracture Properties of Quasi-Brittle Softening Materials Like Concrete Based on the Complete Process of Fracture, Int. J. Fract., 1998, vol. 92, pp. 71–99.

  18. Wecharatana, M. and Shah, S.P., Predictions of Nonlinear Fracture Process Zone in Concrete, J. Eng. Mech., 1983, vol. 109, pp. 1231–1246.

  19. Liu, H.-Z., Lin, J.-S., He, J.-D., and Xie, H.-Q., Discrete Elements and Size Effects, Eng. Fract. Mech., 2018, vol. 189, pp. 246–272.

  20. Dong, W., Wu, Z., and Zhou, X., Calculating Crack Extension Resistance of Concrete Based on a New Crack Propagation Criterion, Constr. Build. Mater., 2013, vol. 38, pp. 879–889.

  21. Kumar, S. and Barai, S.V., Influence of Specimen Geometry and Size-Effect on the K R-Curve Based on the Cohesive Stress in Concrete, Int. J. Fract., 2008, vol. 152, no. 1, pp. 127–148.

  22. Irwin, G.R., Analysis of Stresses and Strains near the End of a Crack Traversing a Plate, J. Appl. Mech., 1957, vol. 24, pp. 361–364.

  23. Bažant, Z.P. and Kazemi, M.T., Determination of Fracture Energy, Process Zone Length and Brittleness Number from Size Effect with Application to Rock and Concrete, Int. J. Fract., 1990, vol. 44, no. 2, pp. 111–131.

  24. Bažant, Z.P., Scaling of Structural Strength, London: Hermes-Penton, 2005.

  25. Grégoire, D., Rojas-Solano, L.B., and Pijaudier-Cabot, G., Failure and Size Effect for Notched and Unnotched Concrete Beams, Int. J. Numer. Anal. Meth. Geomech., 2013, vol. 37, no. 10, pp. 1434–1452.

  26. Aissaoui, N. and Matallah, M., Sources of Error and Limits of Applying the Energetic-Based-Regularization Method, in COMPLAS XIII Proc. XIII Int. Conf. Comput. Plast. Fundam. Appl., Int. Center for Numerical Methods in Engineering, 2015, pp. 916–921.

  27. Jirásek, M. and Bauer, M., Numerical Aspects of the Crack Band Approach, Comput. Struct., 2012, vol. 110–111, pp. 60–78.

  28. Matallah, M., Farah, M., Grondin, F., Loukili, A., and Rozière, E., Size-Independent Fracture Energy of Concrete at Very Early Ages by Inverse Analysis, Eng. Fract. Mech., 2013, vol. 109, pp. 1–16.

  29. Matallah, M., La Borderie, C., and Maurel, O., A Practical Method to Estimate Crack Openings in Concrete Structures, Int. J. Numer. Anal. Meth. Geomech., 2010, vol. 34, pp. 1615–1633.

  30. Grondin, F. and Matallah, M., How to Consider the Interfacial Transition Zones in the Finite Element Modelling of Concrete?, Cem. Concr. Res., 2014, vol. 58, pp. 67–75.

  31. Nguyen, D., Lawrence, C., La Borderie, C., Matallah, M., and Nahas, G., A Mesoscopic Model for a Better Understand Understanding of the Transition from Diffuse Damage to Localized Damage, Eur. J. Env. Civ. En., 2010, vol. 14, pp. 751–775.

  32. Fichant, S., La Borderie, C., and Pijaudier-Cabot, G., Isotropic Anisotropic Description of Damage in Concrete Structures, Mech. Cohes. Frict. Mater., 1999, vol. 4, no. 4, pp. 339–359.

  33. Williams, M.L., On the Stress Distribution at the Base of a Stationary Crack, J. Appl. Mech., 1957, vol. 24, pp. 109–114.

  34. Ayatollahi, M.R. and Akbardoost, J., Size Effects on Fracture Toughness of Quasi-Brittle Materials—A New Approach, Eng. Fract. Mech., 2012, vol. 92, pp. 89–100.

  35. Akbardoost, J. and Rastin, A., Scaling Effect on the Mixed-Mode Fracture Path of Rock Materials, Phys. Mesomech., 1999, vol. 95, no. 4, pp. 379–390.

  36. Levenberg, K., A Method for the Solution of Certain Non-Linear Problems in Least Squares, Q. Appl. Math., 1944, vol. 2, pp. 164–168.

  37. Guinea, G.V., Pastor, J.Y., Planas, J., and Elices, M., Stress Intensity Factor, Compliance and CMOD for a General Three-Point-Bend Beam, Int. J. Fract., 1998, vol. 89, pp. 103–116.

  38. Wang, H.-W., Wu, Z.-M., Wang, Y.-J., and Yu, R.C., An Analytical Method for Predicting Mode-I Crack Propagation Process and Resistance Curve of Rock and Concrete Materials, Theor. Appl. Fract. Mech., 2019, vol. 100, pp. 328–341.

  39. Morel, S., Dourado, N., and Valentin, G., Wood: a Quasibrittle Material R-curve Behavior and Peak Load Evaluation, Int. J. Fract., 2005, vol. 131, no. 4, pp. 385–400.

  40. Morel, S., R-Curve and Size Effect in Quasibrittle Fractures: Case of Notched Structures, Int. J. Solids Struct., 2007, vol. 44, no. 13, pp. 4272–4290.

  41. Mai, Y.-W., Cohesive Zone and Crack-Resistance (R)-Curve of Cementitious Materials and Their Fibre-Reinforced Composites, Eng. Fract. Mech., 2002, vol. 69, no. 2, pp. 219–234.

Download references

ACKNOWLEDGMENTS

The authors thank Prof. D. Grégoire and Prof. G. Pijaudier-Cabot from the LFC Laboratory (Université de Pau et des Pays de l’Adour, France) for providing experimental results. The present work has been performed at the RISAM Research Laboratory (University of Tlemcen). The authors gratefully acknowledge financial support from the DGRSDT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Matallah.

Additional information

Russian Text © The Author(s), 2019, published in Fizicheskaya Mezomekhanika, 2020, Vol. 23, No. 1, pp. 41–55.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matallah, M., Aissaoui, N. Mesomechanical Investigation of the Relationship between the Length of the Fracture Process Zone and Crack Extensions in Concrete. Phys Mesomech 23, 494–508 (2020). https://doi.org/10.1134/S1029959920060053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959920060053

Keywords

Navigation