Skip to main content
Log in

Influence of Cell Topology on Mode I Fracture Toughness of Cellular Structures

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

A cellular structure is made up by an interconnected network of beams or plates which forms the edges and faces of cells. This paper proposes three different micromechanical models to determine the fracture toughness values of cellular materials such as rigid polyurethane foams using the finite element micromechanical analysis and Abaqus software. This study was carried out for mode I fracture and fracture toughness was predicted based on linear elastic fracture mechanics. Models of two-dimensional cellular solids with square, hexagonal and circular cells were generated for five different relative densities (0.077, 0.105, 0.133, 0.182 and 0.333). A study of the influence of geometrical parameters on fracture toughness was also conducted. Based on the finite-element simulations, three linear correlations are proposed which could be useful for estimation of fracture toughness values if relative densities are in the considered range of 0.077 (90 kg/m3 density) and 0.333 (390 kg/m3 density). Finally, the authors validate their proposed micromechanical models presenting a comparison of analytical, numerical and experimental results of fracture toughness of cellular materials. It was found that at low relative densities (between 0.077 and 0.333), the proposed micromechanical models predict the fracture toughness values similar to experimental and numerical ones, but they must be used according with the real cellular structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

crack length

E :

Young’s modulus

F max :

maximum load from the load-displacement recordings

F I(a/W):

mode I nondimensional stress intensity factor

H :

height of the micromechanical model

K Ic :

mode I fracture toughness

l :

cell length

t :

cell wall thickness

W :

width of the micromechanical model

ρ*:

density of rigid PUR foam

ρs :

density of the solid material of which the foam is made

ρ*/ρs :

relative density

σ:

applied load in order to produce a mode I loading

σfs :

fracture strength of the solid material

σy,max :

maximum stress in the first unbroken strut

ν:

Poisson’s ratio.

References

  1. Brighenti, R., Spagnoli, A., Lanfranchi, M., and Soncini, F., Nonlinear Deformation Behaviour of Auxetic Cellular Materials with Re-Entrant Lattice Structure, Fatig. Fract. Eng. Mater. Struct., 2016, vol. 39, pp. 599–610.

    Article  Google Scholar 

  2. Wang, J., Fracture Toughness of Cellular Materials Using Finite Element Based Micromechanics: Dissertation, University of Florida, 2007.

    Google Scholar 

  3. Andersons, J., Kirpluks, M., Stiebra, L., and Cabulis, U., The Effect of a Circular Hole on the Tensile Strength of Neat and Filled Rigid PUR Foams, Theor. Appl. Fract. Mech., 2015, vol. 78, pp. 8–14.

    Article  Google Scholar 

  4. Panin, V.E., Egorushkin, V.E., Panin, A.V., Chernyavskii, A.G., Plastic Distortion as a Fundamental Mechanism in Nonlinear Mesomechanics of Plastic Deformation and Fracture, Phys. Mesomech., 2016, vol. 19, no. 3, pp. 255–268.

    Article  Google Scholar 

  5. Ayatollahi, M.R., Razavi, S.M.J., Rashidi Moghaddam, M., and Berto, F., Mode I Fracture Analysis of Polymethylmetacrylate Using Modified Energy-Based Models, Phys. Mesomech., 2015, vol. 18, no. 4, pp. 326–336.

    Article  Google Scholar 

  6. He, Z., Kotousov, A., Berto, F., and Branco, R., A Brief Review of Recent Three-Dimensional Studies of Brittle Fracture, Phys. Mesomech., 2016, vol. 19, no. 1, pp. 620.

    Article  Google Scholar 

  7. Surikova, N.S., Panin, V.E., Derevyagina, L.S., Lutfullin, R.Ya., Manzhina, E.V., Kruglov, A.A., and Sarkeeva, A.A., Micromechanisms of Deformation and Fracture in a VT6 Titanium Laminate under Impact Load, Phys. Mesomech., 2015, vol. 18, no. 3, pp. 250–260.

    Article  Google Scholar 

  8. Kovacik, J., Jerz, J., Minarikova, N., Marsavina, L., and Linul, E., Scaling of Compression Strength in Disordered Solids: Metallic Foams, Frattura Integr. Strutt., 2016, vol. 36, pp. 55–62.

    Google Scholar 

  9. Linul, E. and Marsavina, L., Assessment of Sandwich Beams with Rigid Polyurethane Foam Core Using Failure-Mode Maps, P Roman. Acad. A, 2015, vol. 16, no. 4, pp. 522–530.

    Google Scholar 

  10. Linul, E., Marsavina, L., and Kovacik, J., Collapse Mechanisms of Metal Foam Matrix Composites under Static and Dynamic Loading Conditions, Mater. Sci. Eng. A. Struct., 2017, vol. 690, pp. 214–224.

    Article  Google Scholar 

  11. Choi, S. and Sankar, B.V., A Micromechanical Method to Predict the Fracture Toughness of Cellular Materials, Int. J. Solid. Struct., 2005, vol. 42, pp. 1797–1817.

    Article  MATH  Google Scholar 

  12. Linul, E., Serban, D.A., Marsavina, L., and Kovacik, J., Low-Cycle Fatigue Behaviour of Ductile Closed-Cell Aluminium Alloy Foams, Fatig. Fract. Eng. Mater. Struct., 2017, vol. 40, no. 4, pp. 597–604.

    Article  Google Scholar 

  13. Rezaei, B., Niknejad, A., Assaee, H., and Liaghat, G.H., Axial Splitting of Empty and Foamfilled Circular Composite Tubes-An Experimental Study, Arch. Civ. Mech. Eng., 2015, vol. 15, no. 3, pp. 650–662.

    Article  Google Scholar 

  14. Linul, E., Serban, D.A., Marsavina, L., and Sadowski, T., Assessment of Collapse Diagrams of Rigid Polyurethane Foams under Dynamic Loading Conditions, Arch. Civ. Mech. Eng., 2017, vol. 17, no. 3, pp. 457–466.

    Article  Google Scholar 

  15. Linul, E., Serban, D.A., Voiconi, T., Marsavina, L., and Sadowski, T., Energy-Absorption and Efficiency Diagrams of Rigid PUR Foams, Key Eng. Mater., 2014, vol. 601, pp. 246–249.

    Article  Google Scholar 

  16. Ajdari, A., Mechanical Behaviour of Cellular Structures a Finite Element Study: Master on Science in Mechanical Engineering, Boston, Massachusetts: Northeastern University, 2008.

    Google Scholar 

  17. Serban, D.A., Linul, E., Voiconi, T., Marsavina, L., and Modler, N., Numerical Evaluation of Two-Dimensional Micromechanical Structures of Anisotropic Cellular Materials: Case Study for Polyurethane Rigid Foams, Iran. Polymer. J., 2015, vol. 24, pp. 515–529.

    Article  Google Scholar 

  18. Gibson, L.J. and Ashby, M.F., Cellular Solids-Structures and Properties, Cambridge, UK: Press Syndicate of the University of Cambridge, 1997.

    Book  MATH  Google Scholar 

  19. Green, D.J., Fabrication and Mechanical Properties of Lightweight Ceramics Produced by Sintering of Hollow Spheres, J. Am. Ceram. Soc., 1985, vol. 68, pp. 403–409.

    Article  Google Scholar 

  20. Choi, J.B. and Lakes, R.S., Fracture Toughness of Reentrant Foam Material with a Negative Poisson’s Ratio: Experimental and Analysis, Int. J. Fract., 1996, vol. 80, pp. 73–83.

    Article  Google Scholar 

  21. Lipperman, F., Ryvkin, M., and Fuchs, M., Fracture Toughness of Two-Dimensional Cellular Material with Periodic Microstructure, Int. J. Fract., 2007, vol. 146, pp. 279–290.

    Article  MATH  Google Scholar 

  22. Daxner, T., Finite Element Modelling of Cellular Materials, in Cellular and Porous Materials in Structures and Processes, Altenbach, H. and Ochsner, A., Eds., Springer, 2010, pp. 47–106.

    Chapter  Google Scholar 

  23. Alonso, I.Q. and Fleck, N.A., Damage Tolerance of an Elastic-Brittle Diamond-Celled Honeycomb, Scripta Mater., 2007, vol. 56, pp. 693–696.

    Article  Google Scholar 

  24. Fleck, N.A. and Qiu, X., The Damage Tolerance of Elastic-Brittle, Two Dimensional Isotropic Lattices, J. Mech. Phys. Solid., 2007, vol. 55, no. 3, pp. 562–588.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Linul, E. and Marsavina, L., Prediction of Fracture Toughness for Open Cell Polyurethane Foam by Finite-Element Micromechanical Analysis, Iran. Polymer. J., 2011, vol. 20, no. 9, pp. 735–746.

    Google Scholar 

  26. Huang, J.S. and Gibson, L.J., Fracture Toughness of Brittle Honeycombs, Acta Metall. Mater., 1991, vol. 39, no. 7, pp. 1617–1626.

    Article  Google Scholar 

  27. Bowie, O.L. and Freese, C.E., Central Crack in Plane Orthotropic Rectangular Sheet, Int. J. Fract. Mech., 1972, vol. 8, pp. 49–57.

    Article  Google Scholar 

  28. Marsavina, L. and Linul, E., Fracture Toughness of Polyurethane Foams. Experimental versus Micromechanical Models, in Fracture of Materials and Structures from Micro to Macro Scale: 18th Eur. Conf Fracture, Dresden, Germany, August 30-September 03, 2010.

    Google Scholar 

  29. Murakami, Y., Stress Intensity Factors Handbook, Oxford: Pergamon, 1987.

    Google Scholar 

  30. Burman, M., Fatigue Crack Initiation and Propagation in Sandwich Structures: Report No. 98-29, Stockholm, 1998.

    Google Scholar 

  31. Negru, R., Marsavina, L., Voiconi, T., Linul, E., Filipescu, H., and Belgiu, G., Application of TCD for Brittle Fracture ofNotched PUR Materials, Theor. Appl. Fract. Mech., 2015, vol. 80, pp. 87–95.

    Article  Google Scholar 

  32. Marsavina, L., Constantinescu, D.M., Linul, E., Voiconi, T., and Apostol, D.A., Shear and Mode II Fracture of PUR Foams, Eng. Fail. Anal., 2015, vol. 58, pp. 465–476.

    Article  Google Scholar 

  33. Hallstrom, S. and Grenestedt, J.L., Mixed Mode Fracture of Cracks and Wedge Shaped Notches in Expanded PVC Foam, Int. J. Fract., 1997, vol. 88, pp. 343–358.

    Article  Google Scholar 

  34. Marsavina, L., Kovacik, J., and Linul, E., Experimental Validation of Micromechanical Models for Brittle Aluminium Alloy Foam, Theor. Appl. Fract. Mech., 2016, vol. 83, pp. 11–18.

    Article  Google Scholar 

  35. Ayatollahi, M.R., Rashidi Moghaddam, M., and Berto, F., A Generalized Strain Energy Density Criterion for Mixed Mode Fracture Analysis in Brittle and Quasi-Brittle Materials, Theor. Appl. Fract. Mech., 2015, vol. 79, pp. 70–76.

    Article  Google Scholar 

  36. Lazzarin, P., Campagnolo, A., and Berto, F., A Comparison among Some Recent Energy- and Stress-Based Criteria for the Fracture Assessment of Sharp V-Notched Components under Mode I Loading, Theor. Appl. Fract. Mech., 2014, vol. 71, pp. 21–30.

    Article  Google Scholar 

  37. Marsavina, L., Linul, E., Voiconi, T., Constantinescu, D.M., and Apostol, D.A., On the Crack Path under Mixed Mode Loading on PUR Foams, Frattura Integr. Strutt., 2015, vol. 34, pp. 444–453.

    Google Scholar 

  38. Kabir, M.E., Saha, M.C., and Jeelani, S., Tensile and Fracture Behavior of Polymer Foams, Mater. Sci. Eng. A. Struct., 2006, vol. 429, pp. 225–235.

    Article  Google Scholar 

  39. Marsavina, L., Linul, E., Voiconi, T., Sadowski, T., A Comparison between Dynamic and Static Fracture Toughness of Polyurethane Foams, Polymer. Test., 2013, vol. 32, pp. 673–680.

    Article  Google Scholar 

  40. Linul, E. and Marsavina, L., Experimental Determination of Mixed-Mode Fracture Toughness for Rigid Polyurethane Foams, in Fracture at All Scales, Pluvinage, G. and Milovic, L., Eds., Switzerland: Springer International Publishing, 2017, pp. 221–237.

    Chapter  Google Scholar 

  41. Marsavina, L., Constantinescu, D.M., Linul, E., Stuparu, F.A., and Apostol, D.A., Experimental and Numerical Crack Paths in PUR Foams, Eng. Fract. Mech., 2016, vol. 167, pp. 68–83.

    Article  Google Scholar 

  42. Linul, E., Marsavina, L., Sadowski, T., and Knec, M., Size Effect on Fracture Toughness of Rigid Polyurethane Foams, Solid State Phenomen., 2012, vol. 188, pp. 205–210.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Marsavina.

Additional information

Original Text © E. Linul, D.A. Serban, L. Marsavina, 2018, published in Fizicheskaya Mezomekhanika, 2018, Vol. 21, No. 1, pp. 84–91.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linul, E., Serban, D.A. & Marsavina, L. Influence of Cell Topology on Mode I Fracture Toughness of Cellular Structures. Phys Mesomech 21, 178–186 (2018). https://doi.org/10.1134/S1029959918020121

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959918020121

Keywords

Navigation