Skip to main content
Log in

Magnetic Structure of Mn0.7Fe0.3Ge Compound under Quasi-Hydrostatic Pressure

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

In the paper, the helical magnetic structure of the Mn0.7Fe0.3Ge compound under a high quasihydrostatic pressure of up to 1 GPa was investigated for the first time by small-angle neutron scattering (SANS) in a wide range of temperatures (5–300 K) and magnetic fields (0–5 T). It is shown that the wave vector of the magnetic spiral increases with pressure. The field-temperature (H–T) phase diagrams were plotted for the compound at different pressures up to P = 1 GPa. It was shown that the applied pressure leads to an increase of all the values of critical magnetic fields corresponding to the beginning of the process of the transition of the polycrystalline sample to the conical phase (Hc1), the end of the process (Hc1m) and the transition to the ferromagnetic phase (Hc2), at low temperatures, which may indicate the stabilization of the magnetic system under the external pressure. It was found that the region of existence of a skyrmion lattice (or a phase) decreases with the pressure increase both in the temperature and field ranges. This suggests that the influence of Dzyaloshinskii–Moriya exchange interaction is suppressed when the cell constant is decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Y. Ishikawa, K. Tajima, D. Bloch, M. Roth, Solid State Commun. 19, 525 (1976). https://doi.org/10.1016/0038-1098(76)90057-0

    Article  ADS  CAS  Google Scholar 

  2. B. Lebech, J. Bernhard, T. Freltoft, J. Phys.: Condens. Matter 1, 6105 (1989). https://doi.org/10.1088/0953-8984/1/35/010

    Article  ADS  CAS  Google Scholar 

  3. O. Nakanishi, A. Yanase, A. Hasegawa, et al., Solid State Commun. 35, 995 (1980). https://doi.org/10.1016/0038-1098(80)91004-2

    Article  ADS  CAS  Google Scholar 

  4. P. Bak, M. H. Jensen, J. Phys. C 13, L881 (1980). https://doi.org/10.1088/0022-3719/13/31/002

    Article  ADS  CAS  Google Scholar 

  5. S. Mühlbauer, B. Binz, F. Jonietz, et al., Science 323, 915 (2009). https://doi.org/10.1126/science.1166767

    Article  ADS  CAS  PubMed  Google Scholar 

  6. X. Z. Yu, N. Kanazawa, Y. Onose, et al., Nat. Mater. 10, 106 (2010). https://doi.org/10.1038/nmat2916

    Article  ADS  CAS  PubMed  Google Scholar 

  7. S. Seki, X. Z. Yu, S. Ishiwata, Y. Tokura, Science 336, 198 (2012). https://doi.org/10.1126/science.1214143

    Article  ADS  CAS  PubMed  Google Scholar 

  8. C. Pfleiderer, D. Reznik, L. Pintschovius, et al., Nature 427, 227 (2004). https://doi.org/10.1038/nature02232

    Article  ADS  CAS  PubMed  Google Scholar 

  9. A. Barla, H. Wilhelm, M. K. Forthaus, et al., Phys. Rev. Lett. 114, 016803 (2015). https://doi.org/10.1103/PhysRevLett.114.016803

    Article  ADS  CAS  PubMed  Google Scholar 

  10. R. Ritz, M. Halder, M. Wagner, et al., Nature 497, 231 (2013). https://doi.org/10.1038/nature12023

    Article  ADS  CAS  PubMed  Google Scholar 

  11. O. L. Makarova, A. V. Tsvyashchenko, G. Andre, et al., Phys. Rev. B 85, 205205 (2012). https://doi.org/10.1103/physrevb.85.205205

    Article  ADS  Google Scholar 

  12. N. Kanazawa, Y. Onose, T. Arima, et al., Phys. Rev. Lett. 106, 156603 (2011). https://doi.org/10.1103/physrevlett.106.156603

    Article  ADS  CAS  PubMed  Google Scholar 

  13. V. A. Chizhikov, V. E. Dmitrienko, Phys. Rev. B 88, 214402 (2013). https://doi.org/10.1103/PhysRevB.88.214402

    Article  ADS  CAS  Google Scholar 

  14. E. Altynbaev, S.-A. Siegfried, E. Moskvin, et al., Phys. Rev. B 94, 174403 (2016).

    Article  ADS  Google Scholar 

  15. E. Altynbaev, S. A. Siegfried, P. Strauß, et al., Phys. Rev. B 97, 144411 (2018). https://doi.org/10.1103/PhysRevB.97.144411

    Article  ADS  CAS  Google Scholar 

  16. E. Altynbaev, N. Martin, A. Heinemann, et al., Phys. Rev. B 101, 100404 (2020). https://doi.org/10.1103/PhysRevB.101.100404

    Article  ADS  CAS  Google Scholar 

  17. J. Gayles, F. Freimuth, T. Schena, et al., Phys. Rev. Lett. 115, 036602 (2015). https://doi.org/10.1103/PhysRevLett.115.036602

    Article  ADS  CAS  PubMed  Google Scholar 

  18. N. Martin, M. Deutsch, J.-P. Itié, et al., Phys. Rev. B 93, 214404 (2016). https://doi.org/10.1103/PhysRevB.93.214404

    Article  ADS  CAS  Google Scholar 

  19. D. O. Skanchenko, E. V. Altynbaev, N. Martin, et al., J. Alloys Compd. 862, 158606 (2021). https://doi.org/10.1016/j.jallcom.2021.158606

    Article  CAS  Google Scholar 

  20. A. Tsvyashchenko, V. Sidorov, L. Fomicheva, et al., Solid State Phenom. 190, 225 (2012). https://doi.org/10.4028/www.scientific.net/SSP.190.225

    Article  CAS  Google Scholar 

  21. R. A. Sadykov, N. S. Bezaeva, A. I. Kharkovskiy, et al., Rev. Sci. Instrum. 79, 115102 (2008). https://doi.org/10.1063/1.2999578

    Article  ADS  CAS  PubMed  Google Scholar 

  22. R. Sadykov, C. Pappas, L. J. Bannenberg, et al., J. Neutron Res. 20, 25 (2018). https://doi.org/10.3233/JNR-180056

    Article  Google Scholar 

  23. N. Martin, M. Deutsch, T. C. Hansen, et al., Phys. Rev. B, 100, 060401 (2019). https://doi.org/10.1103/PhysRevB.100.060401

  24. L. J. Bannenberg, R. Sadykov, R. M. Dalgliesh, et al., Phys. Rev. B, 100, 054447 (2019). https://doi.org/10.1103/PhysRevB.100.054447

Download references

Funding

This work was supported by the grant no. 22-12-00008 of the Russian Science Foundation (https://rscf.ru/project/22-12-00008/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. O. Skanchenko.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skanchenko, D.O., Altynbaev, E.V., Martin, N. et al. Magnetic Structure of Mn0.7Fe0.3Ge Compound under Quasi-Hydrostatic Pressure. J. Surf. Investig. 17 (Suppl 1), S1–S5 (2023). https://doi.org/10.1134/S1027451023070480

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023070480

Keywords:

Navigation