Skip to main content
Log in

Abstract

Samples of the Pr–Ce–Ni–O system with Ce content relative to Pr: 5, 25, 50 mol % were synthesized by a modified Pechini method and studied using in situ synchrotron XRD in the temperature range of 30–700–30°C first in an inert gas flow then in a synthetic air flow. The formation of a first-order Ruddlesden–Popper phase, as well as two cubic fluorite-type phases, was observed for a 5 mol % Ce : Pr sample. A sample with 25 mol % Ce : Pr comprised two fluorite phases. During heating in an inert gas flow, reversible Pr7O12-type phase formation was observed from some part of the fluorite phases. A sample with 50 mol % Ce : Pr comprised a single fluorite phase that turned out to be inhomogeneous with some close cation content distribution, which could be seen in the oxygen incorporation region upon heating in a synthetic air flow after thermocycling in an inert gas flow. It is seen under these conditions since the fluorite lattice parameter is sensitive to oxygen release (a sharp increase in the lattice parameters) and oxygen incorporation (a sharp decrease in the lattice parameters).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Z. Shao and M. O. Tadé, Intermediate-Temperature Solid Oxide Fuel Cells (Springer, Heidelberg, 2016)

    Book  Google Scholar 

  2. A. P. Tarutin, J. G. Lyagaeva, D. A. Medvedev, L. Bi, and A. A. Yaremchenko, J. Mater. Chem. A 9, 154 (2021). https://doi.org/10.1039/D0TA08132A

    Article  CAS  Google Scholar 

  3. A. Atkinson and A. Selçuk, Acta Mater. 47, 867 (1999). https://doi.org/10.1016/S1359-6454(98)00412-1

    Article  CAS  Google Scholar 

  4. Z. Naiqing, S. Kening, Z. Derui, and J. Dechang, J. Rare Earths 24, 90 (2006). https://doi.org/10.1016/S1002-0721(07)60331-7

    Article  Google Scholar 

  5. H. Hayashi, T. Saitou, N. Maruyama, H. Inaba, K. Kawamura, and M. Mori, Solid State Ionics 176, 613 (2005). https://doi.org/10.1016/j.ssi.2004.08.021

    Article  CAS  Google Scholar 

  6. A. Løken, S. Ricote, and S. Wachowski, Crystals 8, 365 (2018). https://doi.org/10.3390/cryst8090365

    Article  CAS  Google Scholar 

  7. A. Tarancón, M. Burriel, J. Santiso, S. J. Skinner, and J. A. Kilner, J. Mater. Chem. 20, 3799 (2010). https://doi.org/10.1039/b922430k

    Article  CAS  Google Scholar 

  8. P. Ganguly and C. N. R. Rao, J. Solid State Chem. 53, 193 (1984). https://doi.org/10.1016/0022-4596(84)90094-X

    Article  CAS  Google Scholar 

  9. P. Ding, W. Li, H. Zhao, C. Wu, L. Zhao, B. Dong, and S. Wang, J. Phys. Mater. 4, 022002 (2021). https://doi.org/10.1088/2515-7639/abe392

    Article  CAS  Google Scholar 

  10. R. D. Shannon, Acta Crystallogr., A 32, 751 (1976). https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  11. M. A. Yatoo and S. J. Skinner, Mater. Today: Proc. 56, 3747 (2022). https://doi.org/10.1016/j.matpr.2021.12.537

    Article  CAS  Google Scholar 

  12. J. Dailly, S. Fourcade, A. Largeteau, F. Mauvy, J. C. Grenier, and M. Marrony, Electrochim. Acta 55, 5847 (2010). https://doi.org/10.1016/j.electacta.2010.05.034

    Article  CAS  Google Scholar 

  13. R. K. Sharma, S.-K. Cheah, M. Burriel, L. Dessemond, J.-M. Bassat, and E. Djurado, J. Mater. Chem. A 5, 1120 (2017). https://doi.org/10.1039/C6TA08011A

    Article  CAS  Google Scholar 

  14. V. Vibhu, J.-M. Bassat, A. Flura, C. Nicollet, J.-C. Grenier, and A. Rougier, ECS Trans. 68, 825 (2015). https://doi.org/10.1149/06801.0825ecst

    Article  CAS  Google Scholar 

  15. T.-W. Chiu, M.-X. Lin, H.-Y. Shih, B. Hwang, H.‑Y. Chang, and Y.-M. Wang, Ceram. Int. 43, S700 (2017). https://doi.org/10.1016/j.ceramint.2017.05.269

    Article  CAS  Google Scholar 

  16. G. Adachi, N. Imanaka, and Z. C. Kang, Binary Rare Earth Oxides (Kluwer, Dordrecht, 2004).

    Book  Google Scholar 

  17. Y. Tokura, H. Takagi, and S. A. Uchida, Nature 337, 345 (1989). https://doi.org/10.1038/337345a0

    Article  CAS  Google Scholar 

  18. N. P. Armitage, P. Fournier, and R. L. Greene, Rev. Mod. Phys. 82, 2421 (2010). https://doi.org/10.1103/RevModPhys.82.2421

    Article  CAS  Google Scholar 

  19. L. M. Kolchina, N. V. Lyskov, A. N. Kuznetsov, S. M. Kazakov, M. Z. Galin, A. Meledin, A. M. Abakumov, S. I. Bredikhin, G. N. Mazo, and E. V. Antipov, RSC Adv. 6, 101029 (2016). https://doi.org/10.1039/C6RA21970E

  20. T. Maksimchuk, E. Filonova, D. Mishchenko, N. Eremeev, E. Sadovskaya, I. Bobrikov, A. Fetisov, N. Pikalova, A. Kolchugin, A. Shmakov, V. Sadykov, and E. Pikalova, Appl. Sci. 12, 3747 (2022). https://doi.org/10.3390/app12083747

    Article  CAS  Google Scholar 

  21. H. Yokokawa, N. Sakai, T. Kawada, and M. Dokiya, J. Solid State Chem. 94, 106 (1991). https://doi.org/10.1016/0022-4596(91)90225-7

    Article  CAS  Google Scholar 

  22. P. Poix, J. Solid State Chem. 31, 95 (1980). https://doi.org/10.1016/0022-4596(80)90011-0

    Article  CAS  Google Scholar 

  23. M. P. Pechini, US Patent No. 3330697 (1967)

  24. M. Arapova, S. Naurzkulova, T. Krieger, V. Rogov, and V. Sadykov, Catalysts 12, 1151 (2022). https://doi.org/10.3390/catal12101151

    Article  CAS  Google Scholar 

  25. P. A. Piminov, G. N. Baranov, A. V. Bogomyagkov, D. E. Berkaev, V. M. Borin, V. L. Dorokhov, S. E. Karnaev, V. A. Kiselev, E. B. Levichev, O. I. Meshkov, S. I. Mishnev, S. A. Nikitin, I. B. Nikolaev, S. V. Sinyatkin, P. D. Vobly, K. V. Zolotarev, and A. N. Zhuravlev, Phys. Procedia 84, 19 (2016). https://doi.org/10.1016/j.phpro.2016.11.005

    Article  CAS  Google Scholar 

  26. V. M. Aulchenko, O. V. Evdokov, V. D. Kutovenko, B. Ya. Pirogov, M. R. Sharafutdinov, V. M. Titov, B. P. Tolochko, A. V. Vasiljev, I. A. Zhogin, and V. V. Zhulanov, Nucl. Instrum. Methods Phys. Res., Sect. A 603, 76 (2009). https://doi.org/10.1016/j.nima.2008.12.164

    Article  CAS  Google Scholar 

  27. D. Mishchenko, Z. Vinokurov, E. Gerasimov, E. Filonova, A. Shmakov, and E. Pikalova, Crystals 12, 344 (2022). https://doi.org/10.3390/cryst12030344

    Article  CAS  Google Scholar 

  28. B. H. Toby and R. B. von Dreele, J. Appl. Crystallogr. 46, 544 (2013). https://doi.org/10.1107/S0021889813003531

    Article  CAS  Google Scholar 

  29. S. Gates-Rector and T. Blanton, Powder Diffr. 34, 352 (2019). https://doi.org/10.1017/S0885715619000812

    Article  CAS  Google Scholar 

  30. T. Nakamura, Y. Ling, and K. Amezawa, J. Mater. Chem. A 3, 10471 (2015). https://doi.org/10.1039/C5TA01504A

    Article  CAS  Google Scholar 

  31. P. Shuk, Solid State Ionics 116, 217 (1999). https://doi.org/10.1016/S0167-2738(98)00345-2

    Article  CAS  Google Scholar 

  32. R. Chiba, H. Taguchi, T. Komatsu, H. Orui, K. Nozawa, and H. Arai, Solid State Ionics 197, 42 (2011). https://doi.org/10.1016/j.ssi.2011.03.022

    Article  CAS  Google Scholar 

  33. A. Flura, C. Nicollet, V. Vibhu, A. Rougier, J.-M. Bassat, and J.-C. Grenier, Electrochim. Acta 231, 103 (2017). https://doi.org/10.1016/j.electacta.2017.02.019

    Article  CAS  Google Scholar 

  34. V. A. Sadykov, N. F. Eremeev, Z. S. Vinokurov, A. N. Shmakov, V. V. Kriventsov, A. I. Lukashevich, A. V. Krasnov, and A. V. Ishchenko, J. Ceram. Sci. Tech. 8, 129 (2017). https://doi.org/10.4416/JCST2016-00099

    Article  Google Scholar 

  35. I. Shajahan, J. Ahn, P. Nair, S. Medisetti, S. Patil, V. Niveditha, G. Uday Bhaskar Babu, H. P. Dasari, and J.-H. Lee, Mater. Chem. Phys. 216, 136 (2018). https://doi.org/10.1016/j.matchemphys.2018.05.078

    Article  CAS  Google Scholar 

  36. R. B. von Dreele, L. Eyring, A. L. Bowman, and J. L. Yarnell, Acta Crystallogr. B 31, 971 (1975). https://doi.org/10.1107/S056774087500430X

    Article  Google Scholar 

  37. G. Adachi and N. Imanaka, Chem. Rev. 98, 1479 (1998). https://doi.org/10.1021/cr940055h

    Article  CAS  Google Scholar 

  38. H. L. Tuller, S. R. Bishop, D. Chen, Y. Kuru, J.-J. Kim, and T. S. Stefanik, Solid State Ionics 225, 194 (2012). https://doi.org/10.1016/j.ssi.2012.02.029

    Article  CAS  Google Scholar 

  39. C. Lenser, F. Gunkel, Y. J. Sohn, and N. H. Menzler, Solid State Ionics 314, 204 (2018). https://doi.org/10.1016/j.ssi.2017.09.023

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the governmental order for Synchrotron radiation facility SKIF, Boreskov Institute of Catalysis.

The synchrotron in situ XRD experiments were done at the Shared Research Center SSTRC on the basis of the VEPP-4 – VEPP-2000 complex at BINP SB RAS.

The XRD study using a Bruker D8 Advance diffractometer was carried out using facilities of the shared research center “National center of investigation of catalysts” at Boreskov Institute of Catalysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Mishchenko.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishchenko, D.D., Arapova, M.V. & Shmakov, A.N. In Situ Synchrotron XRD Study of the Pr–Ce–Ni–O System. J. Surf. Investig. 17, 1302–1312 (2023). https://doi.org/10.1134/S1027451023060137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023060137

Keywords:

Navigation