Skip to main content
Log in

Structural, Morphological, and Optical Analysis of La-Doped NiO Films Fabricated by the Sol-Gel Spin-Coating Technique for Solid-State Electronics

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

La-doped nanostructured NiO films are fabricated by the sol-gel spin-coating technique on a fluorine-doped tin-oxide glass. The atomic-force microscopy of La : NiO films demonstrates a change in the grain size of the film due to doping with La. X-ray diffraction shows that La : NiO films are of a nanocrystalline nature, the crystallite size decreases as the La content increases. The optical constants are calculated by the Kramers–Kronig method. The band gap decreases at a higher La dopant content due to the quantum-confinement effect. The values of the nonlinear susceptibility of the films of first and third orders are also calculated, and these parameters behave in a similar way. A highly effective radiation-protective material based on La : NiO films is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. B. Sasi, K. G. Gopchandran, P. K. Manoj, P. Koshy, P. Prabhakara Rao, and V. K. Vaidyan, Vacuum 68, 149 (2003). https://doi.org/10.1016/s0042-207x(02)00299-3

    Article  Google Scholar 

  2. S. Mohseni Meybodi, S. A. Hosseini, M. Rezaee, S. K. Sadrnezhaad, and D. Mohammad Yani, Ultrason. Sonochem. 19, 841 (2012). https://doi.org/10.1016/j.ultsonch.2011.11.017

    Article  CAS  Google Scholar 

  3. M. Awais, D. Dini, J. M. Don Macelroy, Y. Halpin, J. G. Vos Johannes, and D. P. Dowling, J. Electroanal. Chem. 689, 185 (2013). https://doi.org/10.1016/j.jelechem.2012.11.025

    Article  CAS  Google Scholar 

  4. I. Hotovy, J. Huran, and L. Spiess, J. Mater. Sci. 39, 2609 (2004). https://doi.org/10.1023/B:JMSC.0000020040.77683.20

    Article  CAS  Google Scholar 

  5. A. A. A. Darwish, M. Rashad, and H. A. Al-Aoh, Dyes Pigm. 160, 563 (2019). https://doi.org/10.1016/j.dyepig.2018.08.045

    Article  CAS  Google Scholar 

  6. M. Bonomo, J. Nanopart. Res. 20, 222 (2008). https://doi.org/10.1007/s11051-018-4327-y

    Article  CAS  Google Scholar 

  7. D. B. Menzies, L. Bourgeois, Y. B. Cheng, G. P. Simon, N. Brack, and L. Spiccia, Surf. Coat. Technol. 197, 61 (2005). https://doi.org/10.1016/j.surfcoat.2004.10.11

    Article  Google Scholar 

  8. A. M. Soleimanpour, A. H. Jayatissa, and G. Sumanasekera, Appl. Surf. Sci. 276, 291 (2013). https://doi.org/10.1016/j.apsusc.2013.03.085

    Article  CAS  Google Scholar 

  9. K. Tian, X. Wang, H. Li, R. Nadimicherla, and X. Guo, Sens. Actuators, B 227, 554 (2016). https://doi.org/10.1016/j.snb.2015.12.104

    Article  CAS  Google Scholar 

  10. J. Choia, J. Byunb, and S. Kimb, Sens. Actuators, B 227, 149 (2016). https://doi.org/10.1016/j.snb.2015.12.014

    Article  CAS  Google Scholar 

  11. F. Yang and Z. Guo, J. Colloid Interface Sci. 467, 192 (2016). https://doi.org/10.1016/j.jcis.2016.01.033

    Article  CAS  Google Scholar 

  12. Attieh A. Al-Ghamdi, M. Sh Abdel-wahab, A. A. Farghali, and P. M. Z. Hasan, Mater. Res. Bull. 75, 71 (2016). https://doi.org/10.1016/j.materresbull.2015.11.027

    Article  CAS  Google Scholar 

  13. J. H. Kim, K. Zhu, Y. F. Yan, C. L. Perkins, and A. J. Frank, Nano Lett. 10, 4099 (2010). https://doi.org/10.1021/nl102203s

    Article  CAS  Google Scholar 

  14. P. Justin, S. K. Meher, and G. R. Rao, J. Phys. Chem. C 114, 5203 (2010). https://doi.org/10.1021/jp9097155

    Article  CAS  Google Scholar 

  15. M. Krunks, J. Soon, T. Unt, A. Mere, and V. Mikli, Vacuum 107, 242 (2014). https://doi.org/10.1016/j.vacuum.2014.02.013

    Article  CAS  Google Scholar 

  16. W. L. Jang, Y. M. Lu, W. S. Hwang, and W. C. Chen, J. Eur. Ceram. Soc. 30, 503 (2010). https://doi.org/10.1016/j.jeurceramsoc.2009.05.041

    Article  CAS  Google Scholar 

  17. N. P. Klochko, K. S. Klepikova, D. O. Zhadan, S. I. Petrushenko, V. R. Kopach, G. S. Khrypunov, V. M. Lyubov, S. V. Dukarov, V. O. Nikitin, M. O. Maslak, A. Yu. Zakovorotniy, and A. L. Khrypunova, Mater. Sci. Semicond. Process. 83, 42 (2018). https://doi.org/10.1016/j.mssp.2018.04.010

    Article  CAS  Google Scholar 

  18. S. C. Chen, T. Y. Kuo, Y. C. Lin, and H. C. Lin, Thin Solid Films 519, 4944(2011). https://doi.org/10.1016/j.tsf.2011.01.058

    Article  CAS  Google Scholar 

  19. M. Ben Amor, A. Boukhachem, K. Boubaker, and M. Amlouk, Mater. Sci. Semicond. Process. 27, 994 (2014). https://doi.org/10.1016/j.mssp.2014.08.008

    Article  CAS  Google Scholar 

  20. M. Ben Amor, A. Boukhachem, A. Labidi, K. Boubaker, and M. Amlouk, J. Alloys Compd. 693, 490 (2017). https://doi.org/10.1016/j.jallcom.2016.09.207

    Article  CAS  Google Scholar 

  21. R. Lontio Fomekong, H. M. Tedjieukeng Kamta, J. Ngolui Lambi, D. Lahem, P. Eloy, M. Debliquy, and A. Delcorte, J. Alloys Compd. 731, 1188 (2018). https://doi.org/10.1016/j.jallcom.2017.10.089

    Article  CAS  Google Scholar 

  22. V. Ganesh, L. Haritha, Mohd Anis, Mohd Shkir, I. S. Yahia, Arun Singh, and S. Al-Faify, Solid State Sci. 86, 98 (2018). https://doi.org/10.1016/j.solidstatesciences.2018.10.009

    Article  CAS  Google Scholar 

  23. J. Keraudy, A. Ferrec, M. Richard-Plouet, J. Hamon, A. Goullet, and P.-Y. Jouan, Appl. Surf. Sci. 409, 77 (2017). https://doi.org/10.1016/j.apsusc.2017.02.229

    Article  CAS  Google Scholar 

  24. X. Hou, Q. Lu, and X. Wang, J. Sci.: Adv. Mater. Devices 2, 41 (2017). https://doi.org/10.1016/j.jsamd.2017.02.006

    Article  Google Scholar 

  25. A. Manikandan, E. Manikandan, B. Meenatchi, S. Vadivel, S. K. Jaganathan, R. Ladchumananandasivam, M. Henini, M. Maaza, and J. Sundeep Aanand, J. Alloys Compd. 723, 1155 (2017). https://doi.org/10.1016/j.jallcom.2017.06.336

    Article  CAS  Google Scholar 

  26. K. Singh, R. Kumar, and A. Chowdhury, Mater. Today: Proc. 5, 22993 (2018). https://doi.org/10.1016/j.matpr.2018.11.027

    Article  CAS  Google Scholar 

  27. L. Vimala Devi, S. Sellaiyan, S. Sankar, and K. Sivaji, Mater. Res. Express 5, 51085468 (2018). https://doi.org/10.1088/2053-1591/aaa7a3

    Article  CAS  Google Scholar 

  28. J. Pan, W. Du, Y. Liu, Y. Cheng, and Sh. Yuan, J. Rare Earths 37, 602 (2019). https://doi.org/10.1016/j.jre.2018.10.004

    Article  CAS  Google Scholar 

  29. D. Han, X. Jing, J. Wang, P. Yang, D. Song, and J. Liu, J. Electroanal. Chem. 682, 37 (2012). https://doi.org/10.1016/j.jelechem.2012.06.016

    Article  CAS  Google Scholar 

  30. J. Jian, F. Luo, Ch. Gao, C. Suo, X. Wang, H. Song, and X. Hu, Ceram. Int. 40, 6973 (2014). https://doi.org/10.1016/j.ceramint.2013.12.024

    Article  CAS  Google Scholar 

  31. M. M. El-Nahass, H. M. Zeyada, K. F. Abd-El Rahman, and A. A. A. Darwish, Eur. Phys. J. Appl. Phys. 62, 10202 (2013). https://doi.org/10.1051/epjap/2013120061

    Article  CAS  Google Scholar 

  32. X. Yang, P. Gao, Z. Yang, J. Zhu, F. Huang, and J. Ye, Sci. Rep. 7, 44576 (2017). https://doi.org/10.1038/srep44576

    Article  CAS  Google Scholar 

  33. S. Scheel, L. Knöll, and D. G. Welsch, Phys. Rev. A 60, 4094 (1999). https://doi.org/10.1103/PhysRevA.60.4094

    Article  CAS  Google Scholar 

  34. A. Rahal, S. Benramache, and B. Benhaoua, J. Semicond. 34, 093003 (2013). https://doi.org/10.1088/1674-4926/34/9/093003

  35. M. M. El-Samanoudy, Thin Solid Films 423, 201 (2003). https://doi.org/10.1016/S0040-6090(02)01042-8

    Article  CAS  Google Scholar 

  36. M. M. El-Nahass, K. F. Abd-El-Rahman, A. A. M. Farag, and A. A. A. Darwish, Int. J. Mod. Phys. 18, 421 (2004). https://doi.org/10.1142/S0217979204023982

    Article  CAS  Google Scholar 

  37. W. Xiong, S. Jimei, G. Lisheng, J. Jiayi, Z. Huagui, and Z. Zude, Nanotechnology 16, 37 (2004). https://doi.org/10.1088/0957-4484/16/1/009

    Article  CAS  Google Scholar 

  38. M. Sesha Reddy, K. T. Ramakrishna Reddy, B. S. Naidu, and P. J. Reddy, Opt. Mater. 4, 787 (1995). https://doi.org/10.1016/0925-3467(95)00039-9

    Article  Google Scholar 

  39. Saleem I. Qashou, M. Rashad, A. A. A. Darwish, and T.A. Hanafy, Opt. Quantum Electron. 49, 240 (2017). https://doi.org/10.1007/s11082-017-1069-5

    Article  CAS  Google Scholar 

  40. H. Ticha and L. Tichy, J. Optoelectron. Adv. Mater. 4, 381 (2002). https://doi.org/10.1.1.457.9038

  41. V. Ganesh, I. Yahia, S. AlFaify, and M. Shkir, J. Phys. Chem. Solids 100, 115 (2017). https://doi.org/10.1016/j.jpcs.2016.09.022

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Deanship of Scientific Research at King Khalid University within the framework of the research-group program (project no. R.G.P.2/43/40).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Rud.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Saetova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aboraia, A.M., Darwish, A.A., Zahran, H.Y. et al. Structural, Morphological, and Optical Analysis of La-Doped NiO Films Fabricated by the Sol-Gel Spin-Coating Technique for Solid-State Electronics. J. Surf. Investig. 16, 1048–1054 (2022). https://doi.org/10.1134/S1027451022060027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022060027

Keywords:

Navigation