Skip to main content
Log in

Formation of Microstructures with a Given 3D-Profile Based on Epitaxial Films of Rare-Earth Iron-Garnet Using the Method of Ionic Etching

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The possibility of forming a given smooth 3D-profile of magnetic microstructures based on iron–garnet (BiY)3(FeAlGa)5O12 epitaxial films on Gd3Ga5O12 substrates by the ionic-plasma etching of the surface with a mask is experimentally investigated. Such thin-film magnetic microstructures are used to create ultra-sensitive magnetic-field sensors with a low noise level upon dynamic planar remagnetization. Surface etching is carried out using Ar+ ions in a high-frequency glow discharge plasma. It is shown that when the mask is applied to the film surface during ion etching an inhomogeneous plasma flow is formed at the edge of the mask, which is due to static charging of the dielectric surface of the mask and film. This leads to the formation of a smoothed profile at the edge of the film near the boundary of the etching area. Upon the creation of a gap between the mask and the film surface, a smoothed profile of the film edge near the boundary of the etching area is formed by the inhomogeneous distribution of the plasma flow due to the effect of the geometric penumbra. The width of the smoothed profile area can be controlled in the range from several to hundreds of micrometers by changing the height of the gap between the mask and the film surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. P. M. Vetoshko, N. A. Gusev, D. A. Chepurnova, E. V. Samoilova, A. K. Zvezdin, A. A. Korotaeva, and V. I. Belotelov, Med. Tekh., No. 4(298), 15 (2016).

  2. H. Eftekhari and M. M. Tehranchi, Optik 207, 163830 (2020).

    Article  CAS  Google Scholar 

  3. J. Qin, L. Deng, J. Xie, T. Tang, and L. Bi, AIP Adv. 5, 017118 (2015).

    Article  Google Scholar 

  4. V. Berzhansky, T. Mikhailova, A. Shaposhnikov, A. Prokopov, A. Karavainikov, V. Kotov, D. Balabanov, and V. Burkov, Appl. Opt. 52, 6599 (2013).

    Article  CAS  Google Scholar 

  5. V. M. Kasimova, N. S. Kozlova, O. A. Buzanov, E. V. Zabelina, P. B. Lagov, and Yu. S. Pavlov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 15, 1259 (2021).

    Article  CAS  Google Scholar 

  6. R. Yiheng, Zh. Dainan, Zh. Huaiwu, J. Lichuan, Y. Qinghui, Z. Zhiyong, L. Mingming, H. Caiyun, and M. Bo, J. Phys. D: Appl. Phys. 51, 435001 (2018).

    Article  Google Scholar 

  7. A. R. Prokopov, P. M. Vetoshko, A. G. Shumilov, A. N. Shaposhnikov, A. N. Kuzmichev, N. N. Koshlyakova, V. N. Berzhansky, A. K. Zvezdin, and V. I. Belotelov, J. Alloys Compd. 671, 403 (2016).

    Article  CAS  Google Scholar 

  8. M. Levy, O. V. Borovkova, C. Sheidler, B. Blasiola, D. Karki, F. Jomard, M. A. Kozhaev, E. Popova, N. Keller, and V. I. Belotelov, Optica 6, 642 (2019).

    Article  CAS  Google Scholar 

  9. M. Alam, M. Vasiliev, V. Belotelov, and K. Alameh, Nanomaterials 8, 355 (2018).

    Article  Google Scholar 

  10. N. Lugovskoy, V. Berzhansky, D. Glechik, and A. Prokopov, J. Phys.: Conf. Ser. 1124, 051063 (2018).

    Google Scholar 

  11. V. N. Berzhansky, D. M. Filippov, and N. V. Lugovskoy, Phys. Procedia 82, 27 (2016).

    Article  CAS  Google Scholar 

  12. V. V. Yurchenko, R. Woerdenweber, Y. M. Galperin, D. V. Shantsev, J. I. Vestgaarden, and T. H. Johansen, Phys. C (Amsterdam, Neth.) 437, 357 (2006).

  13. P. M. Vetoshko, N. A. Gusev, D. A. Chepurnova, E. V. Samoilova, I. I. Syvorotka, I. M. Syvorotka, A. K. Zvezdin, A. A. Korotaeva, and V. I. Belotelov, Tech. Phys. Lett. 42, 860 (2016).

    Article  CAS  Google Scholar 

  14. P. M. Vetoshko, A. K. Zvezdin, V. A. Skidanov, I. I. Syvorotka, I. M. Syvorotka, and V. I. Belotelov, Tech. Phys. Lett. 41, 458 (2015).

    Article  CAS  Google Scholar 

  15. S. N. Polulyakh, V. N. Berzhanskii, E. Yu. Semuk, V. I. Belotelov, P. M. Vetoshko, V. V. Popov, A. N. Shaposhnikov, A. G. Shumilov, and A. I. Chernov, J. Exp. Theor. Phys. 132, 257 (2021).

    Article  CAS  Google Scholar 

  16. I. N. Starshinov, I. A. Mel’nichuk, and A. G. Bogomolov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 7, 575 (2013).

    Article  CAS  Google Scholar 

  17. S. V. Tomilin, V. N. Berzhansky, A. S. Yanovskii, and O. A. Tomilina, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 10, 868 (2016).

    Article  CAS  Google Scholar 

  18. A. E. Khramova, D. O. Ignatyeva, M. A. Kozhaev, S. A. Dagesyan, V. N. Berzhansky, A. N. Shaposhnikov, S. V. Tomilin, and V. I. Belotelov, Opt. Express 27, 33170 (2019).

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation (grant no. 19-72-20 154).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Tomilina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomilina, O.A., Syrov, A.A., Tomilin, S.V. et al. Formation of Microstructures with a Given 3D-Profile Based on Epitaxial Films of Rare-Earth Iron-Garnet Using the Method of Ionic Etching. J. Surf. Investig. 16, 843–846 (2022). https://doi.org/10.1134/S1027451022050378

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022050378

Keywords:

Navigation