Skip to main content
Log in

Rotational Dependence of Line Halfwidth for the Fundamental Band 0 0 0 11–0 0 0 01 of CO2 Confined in Nanoporous Aerogel: New Measurements

  • SPECTROSCOPY OF AMBIENT MEDIUM
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The absorption spectra of carbon dioxide confined in an aerogel sample with pore sizes of 60 nm have been recorded at room temperature in the 2250–2400 cm−1 region using a Bruker IFS 125HR FTIR spectrometer. Parameters of spectral lines of CO2 are derived; their dependences on rotational quantum numbers are shown. The results are compared with data available in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Yu. N. Ponomarev, T. M. Petrova, A. M. Solodov, and A. A. Solodov, “IR spectroscopy of water vapor confined in nanoporous silica aerogel,” Opt. Express 18 (25), 26 062–26 067 (2010).

    Article  Google Scholar 

  2. T. M. Petrova, Yu. N. Ponomarev, A. A. Solodov, A. M. Solodov, and A. F. Danilyuk, “Spectroscopic nanoporometry of aerogel,” JETP Lett. 101, 65–67 (2015).

    Article  ADS  Google Scholar 

  3. A. A. Solodov, T. M. Petrova, Yu. N. Ponomarev, and A. M. Solodov, “Influence of nanoconfinement on the rotational dependence of line half-widths for 2-0 band of carbon oxide,” Chem. Phys. Lett. 637, 18–21 (2015).

    Article  ADS  Google Scholar 

  4. A. A. Solodov, T. M. Petrova, Yu. N. Ponomarev, A. M. Solodov, and E. A. Glazkova, “Rotational dependeces of line half-widths for CO and CO2 confined in SiO2/Al2O3 xerogel,” Mol. Phys. 115 (14), 1708–1712 (2017).

    Article  ADS  Google Scholar 

  5. A. A. Solodov, T. M. Petrova, Yu. N. Ponomarev, A. M. Solodov, and A. F. Danilyuk, “FTIR spectroscopy of 2-0 band of carbon monoxide confined in silica aerogels with different pore sizes,” Mol. Phys. 117 (1), 67–70 (2019).

    Article  ADS  Google Scholar 

  6. T. M. Petrova, Yu. N. Ponomarev, A. A. Solodov, A. M. Solodov, and A. F. Danilyuk, “Line broadening of carbon dioxide confined in nanoporous aerogel,” Proc. SPIE—Int. Soc. Opt. Eng. 10035, 100350 (2016).

  7. J.-M. Hartmann, V. Sironneau, C. Boulet, T. Svensson, J. T. Hodges, and C. T. Xu, “Collisional broadening and spectral shapes of absorption lines of free and nanopore-confined O2 gas,” Phys. Rev. A: 87, 032510–1 (2013).

    Article  ADS  Google Scholar 

  8. J.-M. Hartmann, V. Sironneau, C. Boulet, T. Svensson, J. T. Hodges, and C. T. Xu, “Infrared absorption by molecular gases as a probe of nanoporous silica xerogel and molecule-surface collisions: Low-pressure results,” Phys. Rev. A: 87, 032510 (2013).

    Article  ADS  Google Scholar 

  9. J.-M. Hartmann, C. Boulet, Auwera J. Vander, H. El Hamzaoui, B. Capoen, and M. Bouazaoui, “Line broadening of confined CO gas: From molecule-wall to molecule-molecule collisions with pressure,” J. Chem. Phys. 140, 064302 (2014).

    Article  ADS  Google Scholar 

  10. J.-M. Hartmann, Auwera J. Vander, C. Boulet, M. Birot, M.-A. Dourges, T. Toupance, H. El Hamzaoui, P. Ausset, Y. Carre, L. Kocon, B. Capoen, and M. Bouazaoui, “Infrared absorption by molecular gases to probe porous materials and comparisons with other techniques,” Micropor. Mesopor. Mater. 237, 31–37 (2017).

    Article  Google Scholar 

  11. T. Svensson, E. Adolfsson, M. Burresi, R. Savo, Xu. Can, D. S. Wiersma, and S. Svanberg, “Pore size assessment based on wall collision broadening of spectral lines of confined gas: Experiments on strongly scattering nanoporous ceramics with fine-tuned pore sizes,” Appl. Phys. B 110 (2), 147–154 (2013).

    Article  ADS  Google Scholar 

  12. T. Svensson, M. Lewander, and S. Svanberg, “Laser absorption spectroscopy of water vapor confined in nanoporous alumina: Wall collision line broadening and gas diffusion dynamics,” Opt. Express 18 (16), 16460–16473 (2010).

    Article  ADS  Google Scholar 

  13. A. A. Solodov, T. M. Petrova, Yu. N. Ponomarev, A. A. Solodov, and A. S. Shalygin, “Rotational dependence of line half-width for 0 0 0 11–0 0 0 01 fundamental band of CO2 confined in aerogel nanopores,” Atmos. Ocean. Opt. 32 (6), 619–621 (2019).

    Article  Google Scholar 

  14. I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Csaszar, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, Auwera J. Vander, G. Wagner, J. Wilzewski, P. Wcislo, S. Yu, and E. J. Zak, “The H-ITRAN 2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).

    Article  ADS  Google Scholar 

  15. D. R. Rolison and B. Dunn, “Electrically conductive oxide aerogels: New materials in electrochemistry,” J. Mater. Chem. 11, 963–980 (2001).

    Article  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Science Foundation (grant no. 18-72-00145).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Solodov or T. M. Petrova.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solodov, A.A., Petrova, T.M., Ponomarev, Y.N. et al. Rotational Dependence of Line Halfwidth for the Fundamental Band 0 0 0 11–0 0 0 01 of CO2 Confined in Nanoporous Aerogel: New Measurements. Atmos Ocean Opt 33, 567–570 (2020). https://doi.org/10.1134/S1024856020060147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856020060147

Keywords:

Navigation