Skip to main content
Log in

Synthesis and Electrocatalytic Activity of Graphene–Phosphorene Structures Decorated with Cobalt Atoms

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Nitrogen-doped few-layered graphene structures are synthesized by plasma-assisted electrochemical exfoliation of graphite and used in the preparation of composites with phosphorene structures obtained by supersonic exfoliation of a porous black-phosphorus electrode covered with preliminarily deposited cobalt. The catalytic activity in the hydrogen evolution reaction is studied for the few-layered graphene and phosphorene structures, as well as their mixtures. The mixed electrocatalysts demonstrate the highest activity in the hydrogen evolution reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Bockris, J.O’.M., The hydrogen economy: Its history, Int. J. Hydrogen Energy, 2013, vol. 38, p. 2579.

    Article  CAS  Google Scholar 

  2. Pudukudy, M., Yaakob, Z., Mohammad, M., Narayanan, B., and Sopian, K., Renewable hydrogen economy in Asia—Opportunities and challenges: An overview, Renewable Sustainable Energy Rev., 2014, vol. 30, p. 743.

    Article  Google Scholar 

  3. Miyazaki, J., Kajiyama, T., Matsumoto, K., Fujiwara, H., and Yatabe, M., Ultra high purity hydrogen gas supply system with liquid hydrogen, Int. J. Hydrogen Energy, 1996, vol. 21, p. 335.

    Article  CAS  Google Scholar 

  4. Zhao, G., Rui, K., Dou, S.X., and Sun, W., Heterostructures for electrochemical hydrogen evolution reaction: A review, Adv. Funct. Mater, 2018, vol. 28, p. 1803291.

    Article  Google Scholar 

  5. Chen, Y., Wang, X., Lao, M., Rui, K., Zheng, X., Yu, H., Ma, J., Dou, S.X., and Sun, W., Electrocatalytically inactive SnS2 promotes water adsorption/dissociation on molybdenum dichalcogenides for accelerated alkaline hydrogen evolution, Nano Energy, 2019, vol. 64, p. 103918.

    Article  CAS  Google Scholar 

  6. Lao, M., Rui, K., Zhao, G., Cui, P., Zheng, X., Dou, S.X., and Sun, W., Platinum/nickel bicarbonate heterostructures towards accelerated hydrogen evolution under alkaline conditions, Angew. Chem. Int. Ed., 2019, vol. 58, p. 5432.

    Article  CAS  Google Scholar 

  7. He, L., Lian, P., Zhu, Y., Lu, Q., Wang, C., and Mei, Y., Review on applications of black phosphorus in catalysis, J. Nanosci. Nanotechnol., 2019, vol. 19, p. 5361.

    Article  CAS  PubMed  Google Scholar 

  8. Dinh, K.N., Zhang, Y., Zhu, J., and Sun, W., Phosphorene-based electrocatalysts, Chem. Eur. J., 2020, vol. 26, p. 6437.

    Article  CAS  PubMed  Google Scholar 

  9. Shao, L., Sun, H., Miao, L., Chen, X., Han, M., Sun, J., and Chen, J., Facile preparation of NH2-functionalized black phosphorene for the electrocatalytic hydrogen evolution reaction, J. Mater. Chem. A, 2018, vol. 6, p. 2494.

    Article  CAS  Google Scholar 

  10. Luo, Z.-Z., Zhang, Y., Zhang, C., Tan, H.T., Li, Z., Abutaha, A., and Yan, Q., Multifunctional 0D-2D Ni2P nanocrystals-black phosphorus heterostructure, Adv. Energy Mater., 2016, vol. 7, p. 1601285.

    Article  Google Scholar 

  11. Batmunkh, M., Bat-Erdene, M., and Shapter, J.G., Phosphorene and phosphorene-based materials—Prospects for future applications, Adv. Mater., 2016, vol. 28, p. 8586.

    Article  CAS  PubMed  Google Scholar 

  12. Peng, Y., Lu, B., Wang, N., Lu, J.E., Li, C., Ping, Y., and Chen, S., Oxygen reduction reaction catalyzed by black phosphorus-supported metal nanoparticles: Impacts of interfacial charge transfer, ACS Appl. Mater. Interfaces, 2019, vol. 11, p. 24707.

    Article  CAS  PubMed  Google Scholar 

  13. Liu, D., Wang, J., Lu, J., Ma, C., Huang, H., Wang, Z., Wu, L., Liu, Q., Jin, S., Chu, P.K., and Yu, X.-F., Direct synthesis of metal-doped phosphorene with enhanced electrocatalytic hydrogen evolution, Small Methods, 2019, vol. 3, p. 1900083.

    Article  Google Scholar 

  14. Kochergin, V.K., Manzhos, R.A., Khodos, I.I., and Krivenko, A.G., One-step synthesis of nitrogen-doped few-layer graphene structures decorated with Mn1.5Co1.5O4 nanoparticles for highly efficient electrocatalysis of oxygen reduction reaction, Mendeleev Commun., 2022, vol. 32, p. 494.

    Article  Google Scholar 

  15. Krivenko, A.G., Manzhos, R.A., Kotkin, A.S., Kochergin, V.K., Piven, N.P., and Manzhos, A.P., Production of few-layer graphene structures in different modes of electrochemical exfoliation of graphite by voltage pulses, Instrum. Sci. Technol., 2019, vol. 47, p. 535.

    Article  CAS  Google Scholar 

  16. Krivenko, A.G., Manzhos, R.A., Kochergin, V.K., Malkov, G.V., Tarasov, A.E., and Piven, N.P., Plasma electrochemical synthesis of few-layer graphene structures for modification of epoxy binder, High Energy Chem., 2019, vol. 53, p. 254.

    Article  CAS  Google Scholar 

  17. Belkin, P.N. and Kusmanov, S.A., Plasma electrolytic hardening of steels: Review, Surf. Eng. Appl. Electrochem., 2016, vol. 52, p. 531.

    Article  Google Scholar 

  18. Wang, Y., He, M., Ma, S., Yang, C., Yu, M., Yin, G., and Zuo, P., Low-temperature solution synthesis of black phosphorus from red phosphorus: Crystallization mechanism and lithium-ion battery applications, J. Phys. Chem. Lett., 2020, vol. 11, p. 2708.

    Article  CAS  PubMed  Google Scholar 

  19. Wang, R., Zhang, M., Ge, L., Zhang, B., Zhou, J., Liu, S., and Jiao, T., Facile preparation of black phosphorus-based rGO-BP-Pd composite hydrogels with enhanced catalytic reduction of 4-nitrophenol performances for wastewater treatment, J. Mol. Liq., 2020, vol. 310, p. 113083.

    Article  CAS  Google Scholar 

  20. Vasiliev, V.P., Kotkin, A.S., Kochergin, V.K., Manzhos, R.A., and Krivenko, A.G., Oxygen reduction reaction at few-layer graphene structures obtained via plasma-assisted electrochemical exfoliation of graphite, J. Electroanal. Chem., 2019, vol. 851, p. 113440.

    Article  CAS  Google Scholar 

  21. Liang, T., Liu, Y., Zhang, P., Liu, C., Ma, F., Yan, Q., and Dai, Z., Interface and valence modulation on scalable phosphorene/phosphide lamellae for efficient water electrolysis, J. Chem. Eng., 2020, vol. 395, p. 124976.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was carried out with the use of equipment of the Center of Collective Use of the Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Funding

This study was supported by the Russian Scientific Foundation (grant no. 22-23-00774).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Manzhos.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by T. Safonova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manzhos, R.A., Komarova, N.S., Kotkin, A.S. et al. Synthesis and Electrocatalytic Activity of Graphene–Phosphorene Structures Decorated with Cobalt Atoms. Russ J Electrochem 60, 150–154 (2024). https://doi.org/10.1134/S1023193524020071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193524020071

Keywords:

Navigation