Skip to main content
Log in

Electrochemical Synthesis of Hybrid Materials Based on Polyelectrolyte Complexes of Chitosan and Their Physicochemical Properties

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The morphology, structure, and elemental composition of hybrid materials based on polyelectrolyte complexes of chitosan with nickel and cobalt oxides formed on the surface of stainless steel are studied by using asymmetric alternating current. The X-ray phase analysis has shown that cobalt hydroxyisocyanate is the main phase of these hybrid materials. These hybrid materials are shown to be promising as the electrodes in supercapacitors with alkaline electrolyte, their specific capacitance reaching 479 F g‒1 at the current density of 1 A g–1. The antimicrobial activity of hybrid materials with respect to gram-positive (S. aureus) and gram-negative (E. coli) bacteria is revealed. The corrosion-protective properties of the hybrid materials are studied in 3.5 mass % NaCl solution. They are shown to shift the corrosion potential in the positive region as compared with unprotected steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Kickelbick, G. and Schubert, U., Inorganic clusters in organic polymers and the use of polyfunctional inorganic compounds as polymerization initiators, Monatsh. Chem., 2001, vol. 132, p. 13.

    Article  CAS  Google Scholar 

  2. Choudhary, N., Islam, M.A., Kim, J.H., Ko, T.J., Schropp, A., Hurtado, L., Weitzman, D., Zhai, L., and Jung, Y., Two-dimensional transition metal dichalcogenide hybrid materials for energy applications, Nano Today, 2018, vol. 19, p. 16.

    Article  CAS  Google Scholar 

  3. Shinde, V., Uthayakumar, M., and Karthick, R., Self-assembled cobalt hydroxide micro flowers from nanopetals: Structural, fractal analysis and molecular docking study, Surf. Interfaces, 2022, vol. 32, p. 102163.

    Article  CAS  Google Scholar 

  4. Yao, S., Jiao, Y., Lv, C., Kong, Y., Ramakrishna, S., and Chen, G., Lattice-strain engineering of CoOOH induced by NiMn-MOF for high-efficiency supercapacitor and water oxidation electrocatalysis, J. Colloid Interface Sci., 2022, vol. 623, p. 1111.

    Article  CAS  Google Scholar 

  5. Pandey, U., Singh, A.K., and Sharma, C., Development of anti-corrosive novel nickel-graphene oxide-polypyrrole composite coatings on mild steel employing electrodeposition technique, Synth. Met., 2022, vol. 290. p. 117135.

    Article  CAS  Google Scholar 

  6. Vijeth, H., Ashokkumar, S.P., Yesappa, L., Vandana, M., and Devendrappa, H., Hybrid core-shell nanostructure made of chitosan incorporated polypyrrole nanotubes decorated with NiO for all-solid-state symmetric supercapacitor application, Electrochim. Acta, 2020, vol. 354, p. 136651.

    Article  CAS  Google Scholar 

  7. Aguilera, L., Leyet, Y., Almeida, A., Moreira, J.A., de la Cruz, J.P., Milán-Garcés, E.A., and Pocrifka, L.A., Electrochemical preparation of Ni(OH)2/CoOOH bilayer films for application in energy storage devices, J. Alloys Compd., 2021, vol. 874, p. 159858.

    Article  CAS  Google Scholar 

  8. Abd El-Hack, M.E., El-Saadony, M.T., Shafi, M.E., Zabermawi, N.M., Arif, M., Batiha, G.E., Khafaga, A.F., Abd El-Hakim, Y.M., and Al-Sagheer, A.A., Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: A review, Int. J. Biol. Macromol., 2020, vol. 164, p. 2726.

    Article  CAS  PubMed  Google Scholar 

  9. Roy, B.K., Tahmid, I., and Rashid, T.U., Chitosan-based materials for supercapacitor application-a review, J. Mater. Chem. A, 2021, vol. 9, p. 17592.

    Article  CAS  Google Scholar 

  10. Adewuyi, S., Kareem, K.T., Atayese, A.O., Amolegbe, S.A., and Akinremi, C.A., Chitosan–cobalt(II) and nickel(II) chelates as antibacterial agents, Int. J. Biol. Macromol., 2011, vol. 48, p. 301.

    Article  CAS  PubMed  Google Scholar 

  11. Yang, S.F., Wen, Y., Yi, P., Xiao, K., and Dong, C.F., Effects of chitosan inhibitor on the electrochemical corrosion behavior of 2205 duplex stainless steel, Int. J. Miner., Metall., Mater., 2017, vol. 24, p. 1260.

    Article  CAS  Google Scholar 

  12. Catauro, M., Tranquillo, E., Barrino, F., Blanco, I., Dal Poggetto, F., and Naviglio, D., Drug release of hybrid materials containing Fe(II) citrate synthesized by sol–gel technique, Materials, 2018, vol. 11, p. 2270.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ebisike, K., Okoronkwo, A.E., and Alaneme, K.K., Synthesis and characterization of chitosan–silica hybrid aerogel using sol-gel method, J. King Saud Univ., Sci., 2020, vol. 32, p. 550.

    Google Scholar 

  14. Lei, Q., Guo, J., Noureddine, A., Wang, A., Wuttke, S., Brinker, C.J., and Zhu, W., Sol–gel-based advanced porous silica materials for biomedical applications, Adv. Funct. Mater., 2020, vol. 30, p. 1909539.

    Article  CAS  Google Scholar 

  15. Mbugua, N.S., Kang, M., Zhang, Y., Ndiithi, N.J., Bertrand, G.V., and Yao, L., Electrochemical deposition of Ni, NiCo alloy and NiCo–ceramic composite coatings—A critical review, Materials, 2020, vol. 13, p. 3475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gyftou, P., Pavlatou, E., and Spyrellis, N., Effect of pulse electrodeposition parameters on the properties of Ni/nano-SiC composites, Appl. Surf. Sci., 2008, vol. 254, p. 5910.

    Article  CAS  Google Scholar 

  17. Khramenkova, A.V., Moshchenko, V.V., Yakovenko, A.A., Pushnitsa, K.A., Pavlovskii, A.A., and Maximov, M.Y., Synthesis, structure investigation and future prospects of transition metal oxides/carbon cloth hybrids as flexible binder-free anode materials for lithium-ion batteries, Mater. Lett., 2022, vol. 329, p. 133250.

    Article  CAS  Google Scholar 

  18. Khramenkova, A.V., Ariskina, D.N., Polozhentsev, O.E., Lyatun, I.I., Kuznetsov, D.M., and Yatsenko, E.A., Hybrid polymer-oxide materials formed by non-stationary electrolysis as catalysts for hydrogen peroxide decomposition, Compos. Interfaces, 2022, vol. 29, p. 1229.

    Article  CAS  Google Scholar 

  19. Khramenkova, A.V., Ariskina, D.N., Moshchenko, V.V., and Polozhentsev, O.E., Study of the structure of hybrid coatings on the surface of stainless steel obtained using an alternating asymmetric current, J. Surf. Invest. X-ray, Synchrotron Neutron Tech., 2022, vol. 16, p. 682.

    Article  CAS  Google Scholar 

  20. Khramenkova, A.V., Izvarina, D.N., Shershakova, A.A., Kirilenko, M.A., and Kuznetsov, O.Yu., Electrochemical preparation of hybrid coatings based on cobalt nickel oxides and chitosan and investigation of their functional properties, Galvanotekh. Obrab. Poverkhn., 2022, no. 30 (3), p. 57.

  21. Ignatova, K. and Lilova, D., A study on the kinetics of the electrodeposition of Ni, Co and Ni-Co alloy in citrate electrolyte. Part 1: the kinetic study of the independent electrodeposition of Ni and Co, J. Chem. Technol. Metall., 2015, vol. 50, p. 199.

    Google Scholar 

  22. Schweckandt, D.S. and del Carmen Aguirre, M., Electrodeposition of Ni-Co alloys. Determination of properties to be used as coins, Procedia Mater. Sci., 2015, vol. 8, p. 91.

    Article  CAS  Google Scholar 

  23. Tiwari, N., Kadam, S., Ingole, R., and Kulkarni, S., Facile hydrothermal synthesis of ZnFe2O4 nanostructures for high-performance supercapacitor application, Ceram. Int., 2022, vol. 48, p. 29478.

    Article  CAS  Google Scholar 

  24. Ghosh, D., Giri, S., and Das, C.K., Preparation of CTAB-assisted hexagonal platelet Co (OH)2/graphene hybrid composite as efficient supercapacitor electrode material, ACS Sustainable Chem. Eng., 2013, vol. 1, p. 1135.

    Article  CAS  Google Scholar 

  25. Ji, W., Ji, J., Cui, X., Chen, J., Liu, D., Deng, H., and Fu, Q., Polypyrrole encapsulation on flower-like porous NiO for advanced high-performance supercapacitors, Chem. Commun., 2015, vol. 51, p. 7669.

    Article  CAS  Google Scholar 

  26. Khalaj, M., Golkhatmi, S.Z., and Sedghi, A., High-performance supercapacitor electrode materials based on chemical co-precipitation synthesis of nickel oxide (NiO)/cobalt oxide (Co3O4)-intercalated graphene nanosheets binary nanocomposites, Diamond Relat. Mater., 2021, vol. 114, p. 108313.

    Article  CAS  Google Scholar 

  27. Hussain, N., Yang, W., Dou, J., Chen, Y., Qian, Y., and Xu, L., Ultrathin mesoporous F-doped α-Ni(OH)2 nanosheets as an efficient electrode material for water splitting and supercapacitors, J. Mater. Chem. A, 2019, vol. 7, p. 9656.

    Article  CAS  Google Scholar 

  28. Zheng, L.Y. and Zhu, J.F., Study on antimicrobial activity of chitosan with different molecular weights, Carbohydr. Polym., 2003, vol. 54, p. 527.

    Article  CAS  Google Scholar 

  29. Fred, B. and Pearson Ralph, G. Mechanisms of Inorganic Reactions, New York: Wiley, 1967.

    Google Scholar 

  30. John, S., Joseph, A., Jose, A.J., and Narayana, B., Enhancement of corrosion protection of mild steel by chitosan/ZnO nanoparticle composite membranes, Prog. Org. Coat., 2015, vol. 84, p. 28.

    Article  CAS  Google Scholar 

  31. Bespalova, Zh.I. and Khramenkova, A.V., A study of the possibility of obtaining catalytically active oxide compounds on a solid support by transient electrolysis, Russ. J. Appl. Chem., 2013, vol. 86, p. 539.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to M.A. Khimich and I.Yu. Litovchenko for their help with interpretation of the results of XRD studies of hybrid materials.

Funding

This study was supported by Student’s Startup of the Foundation for Promotion of Small Companies in the Scientific and Technological Sphere (grant no. 159GSSS15-L/78896).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Khramenkova or D. N. Izvarina.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by T. Safonova

Delivered at the 20th All-Russian Meeting “Electrochemistry of Organic Compounds” (EKhOS-2022), Novocherkassk, October 18–22, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khramenkova, A.V., Izvarina, D.N., Mishurov, V.I. et al. Electrochemical Synthesis of Hybrid Materials Based on Polyelectrolyte Complexes of Chitosan and Their Physicochemical Properties. Russ J Electrochem 59, 887–895 (2023). https://doi.org/10.1134/S1023193523110083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193523110083

Keywords:

Navigation