Skip to main content
Log in

Electrochemical Determination of Cisplatin at Modified Carbon Paste Electrode with Graphene Nano Sheets/Gold Nano Particles and a Hydroquinone Derivative in Biological Samples

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The present research dealt with using a carbon paste electrode (CPE) modified by gold nano-particles (AuNPs) graphene nano-sheets (GNs) and 4-hydroxy-2-(triphenylphosphonio) phenolate (HTP) in order to determine of cisplatin. The nano-composite exhibited excellent electrocatalytic activity for the determination of cisplatin by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. CV measurements were used to determine the kinetic parameters including electron transfer coefficient (α) and heterogeneous rate constant (k′) for cisplatin oxidation at the surface of modified electrode, which were 0.39 and (1.23 ± 0.17) × 10–3 cm s–1, respectively. At pH 7.0, cisplatin oxidation at the surface of modified electrode (HTP–AuNPs/GNs–CPE) was down at a potential of ~410 mV less than that of an unmodified electrode (CPE). According to DPV experiments, cisplatin oxidation ranged from 1.0 to 120.0 µM and limit of detection of 0.88 µM. The modified electrode showed acceptable function to detect cisplatin in biological samples by standard addition method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Ghanghoria, R., Kesharwani, P., Tekade, R.K., and Jain, N.K., Targeting luteinizing hormone-releasing hormone: a potential therapeutics to treat gynecological and other cancers, J. Control. Release, 2018, vol. 26, p. 277.

    Article  Google Scholar 

  2. Blandino, G. and Di Agostino, S., New therapeutic strategies to treat human cancers expressing mutant p53 proteins, J. Exp. Clin. Cancer Res., 2018, vol. 37, p. 30.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Albright, B.B., Delgado, M.K., Latif, N.A., Giuntoli, R.L., Ko, E.M., and Haggerty, A.F., Treat and release emergency department utilization by patients with gynecologic cancers: national estimates and trends, Gynecol. Oncol., 2018, vol. 149, p. 141.

    Article  Google Scholar 

  4. Moradi-Marjaneh, R.S., Hassanian, M., Hasanzadeh, M., Rezayi, M., Maftouh, M., Mehramiz, M., and Avan, A., Therapeutic potential of toll like receptors in treatment of gynecological cancers, IUBMB Life, 2019, vol. 71, p. 549.

    Article  PubMed  CAS  Google Scholar 

  5. Fymat, A.L., Harnessing the immune system to treat cancers and neurodegenerative diseases, J. Clin. Res. Neurol., 2018, vol. 1, p. 1.

    Google Scholar 

  6. Lim, W.A. and June, C.H., The principles of engineering immune cells to treat cancer, Cell, 2017, vol. 168, p. 724.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Shishehbore, M.R., Zare, H.R., and Nematollahi, D., Electrocatalytic determination of morphine at the surface of a carbon paste electrode spiked with a hydroquinone derivative and carbon nanotubes, J. Electroanal. Chem., 2012, vol. 665, p. 45.

    Article  Google Scholar 

  8. Promphet, N., Rattanarat, P., Rangkupan, R., Chailapakul, O., and Rodthongkum, N., An electrochemical sensor based on graphene/polyaniline/polystyrene nanoporous fibers modified electrode for simultaneous determination of lead and cadmium, Sens. Actuators B: Chem., 2015, vol. 207, p. 526.

    Article  CAS  Google Scholar 

  9. Santos, V.B., Luiz Fava, E., Miranda Curi, N.S., Censi Faria, R., Guerreiro, T.B., and Fatibello-Filho, O., An electrochemical analyzer for in situ flow determination of Pb(II) and Cd(II) in lake water with on-line data transmission and a global positioning system, Anal. Methods, 2015, vol. 7, p. 3105.

    Article  Google Scholar 

  10. Liua, H., Wana, X., Liub, T., Lib, Y., and Yaob, Y., Cascade sensitive and selective fluorescence OFF-ON-OFF sensor for Cr3+ cation and F anion, Sens. Actuators B: Chem., 2014, vol. 200, pp. 191–197.

    Article  Google Scholar 

  11. Abdel Aziza, A.A. and Sedab, S.H., Detection of trace amounts of Hg2+ in different real samples based on immobilization of novel unsymmetrical tetradentate schiff base within PVC membrane, Sens. Actuators B: Chem., 2014, vol. 197, p. 155.

    Article  Google Scholar 

  12. Xia, D.H., Wang, H.H., Wang, K., Fu, C.W., and Wang, J.H., A novel electrochemical noise sensor applied to detect food safety, Russ. J. Electrochem., 2014, vol. 50, p. 599.

    Article  CAS  Google Scholar 

  13. Zhu, X., Feng, C., Ye, Z., Chen, Y., and Li, G., Fabrication of magneto-controlled moveable architecture to develop reusable electrochemical biosensors, Sci. Rep., 2014, vol. 4, p. 4169.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  14. Shishehbore, M.R., Zare, H.R., Nematollahi, D., and Saber-Tehrani, M., Electrocatalytic oxidation and differential pulse voltammetric determination of hydroxylamine using a 4-hydroxy-2-(triphenyl phosphoio) phenolate carbon nanotubes modified electrode, Anal. Methods, 2011, vol. 3, p. 306.

    Article  PubMed  CAS  Google Scholar 

  15. Khoshroo, A., Hosseinzadeh, L., Sobhani-Nasab, A., Rahimi-Nasrabadi, M., and Ehrlich, H., Development of electrochemical sensor for sensitive determination of oxazepam based on silver–platinum core–shell nanoparticles supported on graphene, J. Electroanal. Chem., 2018, vol. 823, p. 61.

    Article  CAS  Google Scholar 

  16. Safaei, M., Beitollahi, H., and Shishehbore, M.R., Synthesis and characterization of NiFe2O4 nanoparticles using the hydrothermal method as magnetic catalysts for electrochemical detection of norepinephrine in the presence of folic acid, J. Chin. Chem. Soc., 2019, vol. 66, p. 1.

    Article  Google Scholar 

  17. de Oliveira Silva, R., da Silva, É.A., Fiorucci, A.R., and Ferreira, V.S., Electrochemically activated multi-walled crbon nanotubes modified screen-printed electrode for voltammetric determination of sulfentrazone, J. Electroanal. Chem., 2019, vol. 835, p. 220.

    Article  Google Scholar 

  18. Brock, P.R., Maibach, R., Childs, M., Rajput, K., Roebuck, D., Sullivan, M.J., and Brichard, B., Sodium thiosulfate for protection from cis-platin-induced hearing loss, New Engl. J. Med., 2018, vol. 378, p. 2376.

    Article  PubMed  CAS  Google Scholar 

  19. Zhai, J., Shen, J., Xie, G., Wu, J., He, M., Gao, L., and Shen, L., Cancer-associated fibroblasts-derived IL-8 mediates resistance to cisplatin in human gastric cancer, Cancer Lett., 2019, vol. 454, p. 37.

    Article  ADS  PubMed  CAS  Google Scholar 

  20. Rosli, N.F., Fojtu, M., Fisher, A.C., and Pumera, M., Graphene oxide nanoplatelets potentiate anticancer effect of cisplatin in human lung cancer cells, Langmuir, 2019, vol. 35, p. 3176.

    Article  PubMed  CAS  Google Scholar 

  21. Minasian, L.M., Frazier, A.L., Sung, L., O’Mara, A., Kelaghan, J., Chang, K.W., and Freyer, D.R., Prevention of cis-platininduced hearing loss in children: informing the design of future clinical trials, Cancer Med., 2018, vol. 7, p. 2951.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Huang, Z., Timerbaev, A.R., Keppler, B.K., and Hirokawa, T., Determination of cisplatin and its hydrolytic metabolite in human serum by capillary electrophoresis techniques, J. Chromatogr. A, 2006, vol. 1106, p. 75.

    Article  PubMed  CAS  Google Scholar 

  23. Bosch, M.E., Sánchez, A.R., Rojas, F.S., and Ojeda, C.B., Analytical methodologies for the determination of cisplatin, J. Pharm. Biomed. Anal., 2008, vol. 47, p. 451.

    Article  PubMed  CAS  Google Scholar 

  24. Tafazoli, H., Safaei, M., and Shishehbore, M.R., A new sensitive method for quantitative determination of cisplatin in biological samples by kinetic spectrophotometry, Anal. Sci., 2020, vol. 36, no. 10, p. 1217.

    Article  PubMed  CAS  Google Scholar 

  25. Saber, M.M., Al-Mahallawi, A.M., Nassar, N.N., Stork, B., and Shouman, S.A., Targeting colorectal cancer cell metabolism through development of cisplatin and metformin nano-cubosomes, BMC Cancer, 2018, vol. 18, p. 822.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Verschraagen, M., van der Born, K., Zwiers, T.H.U., and van der Vijgh, W.J.F., Simultaneous determination of intact Cisplatin and its metabolite monohydrated Cisplatin in human plasma, J. Chromatogr. B, 2002, vol. 772, p. 273.

    Article  CAS  Google Scholar 

  27. Ye, L., Xiang, M., Lu, Y., Gao, Y., and Pang, P., Electrochemical determination of Cisplatin in serum at graphene oxide/multi-walled carbon nanotubes modified glassy carbon electrode, Int. J. Electrochem. Sci., 2014, vol. 9, p. 1537.

    Article  Google Scholar 

  28. Bosch, M.E., Sánchez, A.J.R., Rojas, F.S., and Ojeda, C.B., Analytical methodologies for the determination of cis-platin, J. Pharm. Biomed. Anal., 2008, vol. 47, p. 451.

    Article  PubMed  CAS  Google Scholar 

  29. Razzaq, H., Qureshi, R., Cabo-Fernandez, L., and Schiffrin, D.J., Synthesis of Au clusters-redox centre hybrids by diazonium chemistry employing double layer charged gold nanoparticles, J. Electroanal. Chem., 2018, vol. 819, p. 9.

    Article  CAS  Google Scholar 

  30. Zhang, Y., Chu, G., Guo, Y., Zhao, W., Yang, Q., and Sun, X., An electrochemical biosensor based on au nanoparticles decorated reduced graphene oxide for sensitively detecting of Hg2+, J. Electroanal. Chem., 2018, vol. 824, p. 201.

    Article  CAS  Google Scholar 

  31. Chen, H., Zhou, K., and Zhao, G., Gold nanoparticles: from synthesis, properties to their potential application as colorimetric sensors in food safety screening, Trends Food Sci. Technol., 2018, vol. 78, p. 83.

    Article  CAS  Google Scholar 

  32. Kanso, H., Pankratova, G., Bollella, P., Leech, D., Hernandez, D., and Gorton, L., Sunlight photocurrent generation from thylakoid membranes on gold nanoparticle modified screen-printed electrodes, J. Electroanal. Chem., 2018, vol. 816, p. 259.

    Article  CAS  Google Scholar 

  33. Safaei, M., Beitollahi, H., and Shishehbore, M.R., Simultaneous determination of epinephrine and folic acid using the Fe3O4@SiO2/GR nanocomposite modified graphite, Russ. J. Electrochem., 2018, vol. 54, p. 851.

    Article  CAS  Google Scholar 

  34. Liu, H., Liu, Y., and Zhu, D., Chemical doping of graphene, J. Mater. Chem., 2011, vol. 21, p. 3335.

    Article  CAS  Google Scholar 

  35. Chen, W., Chen, S., and Dong, C.Q., Surface transfer P-type doping of epitaxial graphene, J. Am. Chem. Soc., 2007, vol. 129, p. 10418.

    Article  PubMed  CAS  Google Scholar 

  36. Giovannetti, G., Khomyakov, P.A., and Brocks, G., Doping graphene with metal contacts, Phys. Rev. Lett., 2008, vol. 101, p. 3.

    Article  Google Scholar 

  37. Nematollahi, D., Tammari, E., and Esmaili, R., Investigation of electrochemically induced conjugate addition reaction: a facile approach to preparation of Schonberg adducts, J. Electroanal. Chem., 2008, vol. 621, p. 113.

    Article  CAS  Google Scholar 

  38. William, S., Hummers, J., and Offeman, R.E., Preparation of graphitic oxide, J. Am. Chem. Soc., 1958, vol. 80, p. 1339.

    Article  Google Scholar 

  39. Zhang, J., Yang, H., Shen, G., Cheng, P., Zhang, J., and Guo, S., Reduction of graphene oxide via L-ascorbic acid, Chem. Commun., 2010, vol. 46, p. 1112.

    Article  CAS  Google Scholar 

  40. Rajeshwari, A., Kunal Garg, Elavarasi, M., Chandrasekaran, N., and Mukherjee, A., Interaction of citrate-capped gold nanoparticles with the selected amino thiols for sensing applications, Proc. Natl. Acad. Sci. India B, 2017, vol. 87, p. 23.

    CAS  Google Scholar 

  41. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 2001.

    Google Scholar 

  42. Ye, L., Xiang, M., Lu, Y., Gao, Y., and Pang, P., Electrochemical determination of cisplatin in serum at graphene oxide/multi-walled carbon nanotubes modified glassy carbon electrode, Int. J. Electrochem. Sci., 2014, vol. 9, p. 1537.

    Article  Google Scholar 

  43. Skoog, D.A., Holler, F.J., and Nieman, T.A., Principles of Instrumental Analysis, London: Saunders College Publ., 1998.

    Google Scholar 

  44. Petrlova, J., Potesil, D., Zehnalek, J., Sures, B., Adam, V., Trnkova, L., and Kizek, R., Cisplatin electrochemical biosensor, Electrochim. Acta, 2006, vol. 51, p. 5169.

    Article  CAS  Google Scholar 

  45. Gholivand, M.B., Ahmadi, E., and Mavaei, M., A novel voltammetric sensor based on graphene quantum dots-thionine/nano-porous glassy carbon electrode for detection of cisplatin as an anti-cancer drug, Sens. Actuators B, 2019, vol. 299, p. 126975.

    Article  CAS  Google Scholar 

  46. Materon, E.M., Wong, A., Klein, S.I., Liu, J., and Sotomayor, M.D., Multi-walled carbon nanotubes modified screen-printed electrodes for cisplatin detection, Electrochim. Acta, 2015, vol. 158, p. 271.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

No certain grant from the public, commercial, or nonprofit funding organizations was awarded for the present study. Researchers are thankful of the Islamic Azad University, Yazd Branch research council for technical contributions during the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Reza Shishehbore.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siavash Sazideh, Masoud Reza Shishehbore Electrochemical Determination of Cisplatin at Modified Carbon Paste Electrode with Graphene Nano Sheets/Gold Nano Particles and a Hydroquinone Derivative in Biological Samples. Russ J Electrochem 57, 1224–1235 (2021). https://doi.org/10.1134/S1023193521110070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193521110070

Keywords:

Navigation