Skip to main content
Log in

Electrochemical Behavior of Novel Composite Based on Reduced Graphene Oxide, Poly-o-Phenylenediamine, and Silicotungstic Аcid

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The behavior of novel electroactive material based on reduced graphene oxide (RGO), poly-o-phenylenediamine (PPD), and silicotungstic acid (SiW) is studied using the methods of cyclic voltammetry (CVA) and electrochemical impedance. It is found that graphene oxide (GO) has a catalytic effect on the electrochemical codeposition of PPD and SiW onto the GO film during fabricating the RGO–PPD–SiW composite. It is shown that the composite has at least six redox transitions depending on the chosen range of cycling potentials. It is found that, at the potentials of 200 and 500 mV (Ag/AgCl), the conductivity of the composite is by 4 orders of magnitude higher than that of PPD. By the example of quinone-hydroquinone and ferro-ferricyanide redox reactions, it is shown that, in this potential range, the composite exhibits electrocatalytic properties, though neither PPD nor SiW individually exhibit pronounced redox transitions in this potential range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Yuan, M. and Minteer, S.D., Redox polymers in electrochemical systems: From methods of mediation to energy storage, Curr. Opin. Electrochem., 2019, vol. 6, p. 1. https://doi.org/10.1016/j.coelec.2019.03.003

    Article  CAS  Google Scholar 

  2. Brownson, D.A.C., Smith, G.C., and Banks C.E., Graphene oxide electrochemistry: the electrochemistry of graphene oxide modified electrodes reveals coverage dependent beneficial electrocatalysis, R. Soc. Open Sci., 2017, vol. 4, p. 171128. https://doi.org/10.1098/rsos.171128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang, D., Liu, L., Jiang, J., Chen, L., and Zhao, J., Polyoxometalate-based composite materials in electrochemistry: state-of-the-art progress and future outlook, Nanoscale, 2020, vol. 12, p. 5705. https://doi.org/10.1039/C9NR10573E

    Article  CAS  PubMed  Google Scholar 

  4. Bar-Cohen, Y., Ch. 8. Electroactive Polymers as Actuators, in Advanced Piezoelectric Materials, Science and Technology, Woodhead Publishing in Materials, 2017, 2nd Ed., p. 319–352. https://doi.org/10.1016/B978-0-08-102135-4.00008-4

  5. Sadakane, M. and Steckhan, E., Electrochemical properties of polyoxometalates as electrocatalysts, Chem. Rev., 1998, vol. 98, p. 219. https://doi.org/10.1021/cr960403a

    Article  CAS  PubMed  Google Scholar 

  6. Sachdeva, S., Turner, J.A., Horan, J.L., and Herring, A.M., The use of heteropoly acids in proton exchange fuel cells, in Fuel Cells and Hydrogen Storage. Structure and Bonding, Bocarsly, A. and Mingos, D., Eds., Springer, Berlin, 2011, vol. 141, p. 115–168. https://doi.org/10.1007/430_2011_45

  7. Vernon, D.R., Meng, F., Dec, S.F., Williamson, D.L., Turner, J.A., and Herring, A.M., Synthesis, characterization, and conductivity measurements of hybrid membranes containing a mono-lacunary heteropolyacid for PEM fuel cell applications, J. Power Sources, 2005, vol. 139, p. 141. https://doi.org/10.1016/j.jpowsour.2004.07.027

    Article  CAS  Google Scholar 

  8. Pisarevskaya, E.Y., Kolesnichenko, I.I., Averin, A.A., Gorbunov, A.M., and Efimov, O.N., A novel multifunctional composite based on reduced graphene oxide, poly-o-phenylenediamine and silicotungstic acid, Synth. Met., 2020, vol. 270, p. 116596. https://doi.org/10.1016/j.synthmet.2020.116596

    Article  CAS  Google Scholar 

  9. Pisarevskaya, E.Y., Klyuev, A.L., Averin, A.A., Gorbunov, A.M., and Efimov, O.N., One-pot electrosynthesis and physicochemical properties of multifunctional material based on graphene oxide, poly-o-phenylenediamine, and silicotungstic acid, J. Solid. State Electrochem., 2020, vol. 25, p. 859. https://doi.org/10.1007/s10008-020-04859-w

    Article  CAS  Google Scholar 

  10. Nipane, S.V., Mali, M.G., and Gokavi, G.S., Reduced graphene oxide supported silicotungstic acid for efficient conversion of thiols to disulfides by hydrogen peroxide, Ind. Eng. Chem. Res., 2014, vol. 53, no. 10, p. 3924. https://doi.org/10.1021/ie404139z

    Article  CAS  Google Scholar 

  11. Nechvílová, K., Kalendová, A., and Stejskal, J., Anticorrosive properties of silicotungstic acid and phosphotungstic heteropolyacid in the paint films, Koroze Ochr. Mater., 2016, vol. 60, p. 122. https://doi.org/10.1515/kom-2016-0019

    Article  Google Scholar 

  12. Cui, M., Ren, S., Pu, J., Wang, Y., Zhao, H., and Wang, L., Poly(o-phenylenediamine) modified graphene toward the reinforcement in corrosion protection of epoxy coatings, Corros. Sci., 2019, vol. 159, p. 108131. https://doi.org/10.1016/j.corsci.2019.108131

    Article  CAS  Google Scholar 

  13. Lan, H., Muslim, A., and Wang, L., Preparation of poly(o-phenylenediamine) nanoparticles with hydrolysed PEO45-b-PtBA35 as template and its electrochemical properties, Micro Nano Lett., 2020, vol. 15, no. 9, p. 618. https://doi.org/10.1049/mnl.2019.0636

    Article  CAS  Google Scholar 

  14. Zhu, H., Wang, X. L., Liu, X. X., and Yang, X. R., Integrated synthesis of poly(o-phenylenediamine) derived carbon materials for high performance supercapacitors, Adv. Mater., 2012, vol. 24, p. 6524. https://doi.org/10.1002/adma.201202461

    Article  CAS  PubMed  Google Scholar 

  15. Sivakkumar, S.R. and Saraswathi, R., Application of poly(o-phenylenediamine) in rechargeable cells, J. Appl. Electrochem., 2004, vol. 34, p. 1147. https://doi.org/10.1007/s10800-004-3302-8

    Article  CAS  Google Scholar 

  16. Kulesza, P.J. and Faulkner, L.R., Solid-state electroanalysis of silicotungstic acid single crystals at an ultramicrodisk electrode, J. Am. Chem. Soc., 1993, vol. 115, p. 11878. https://doi.org/10.1021/ja00078a028

    Article  CAS  Google Scholar 

  17. Shanmugam, S., Viswanathan, B., and Varadarajan, T.K., Synthesis and characterization of silicotungstic acid based organic–inorganic nanocomposite membrane, J. Membr. Sci., 2006, vol. 275, p 105. https://doi.org/10.1016/j.memsci.2005.09.009

    Article  CAS  Google Scholar 

  18. Elgrishi, N., Rountree, K.J., McCarthy, B.D, Rountree, E.S., Eisenhart, T.T., and Dempsey, J.L., A practical beginner’s guide to cyclic voltammetry, J. Chem. Educ., 2018, vol. 95, p. 197. https://doi.org/10.1021/acs.jchemed.7b00361

    Article  CAS  Google Scholar 

  19. Pisarevskaya, E.Y., Rychagov, A.Y., Gorbunov, A.M., Averin, A.A., Makarychev, Y.B., and Efimov, O.N., Synthesis of nanostructured conducting composite films based on reduced graphene oxide and o-phenylenediamine, Synth. Met., 2018, vol. 243, p. 1. https://doi.org/10.1016/j.synthmet.2018.05.006

    Article  CAS  Google Scholar 

  20. Biswas, S. and Drzal, L.T., Multilayered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodes, Chem. Mater., 2010, vol. 22, no. 20, p. 5667. https://doi.org/10.1021/cm101132g

    Article  CAS  Google Scholar 

  21. Casado, N., Hernández, G., Sardon, H., and Mecerreyes, D., Current trends in redox polymers for energy and medicine, Prog. Polym. Sci., 2016, vol. 52, p. 107. https://doi.org/https://doi.org/10.1016/j.progpolymsci.2015.08.003

    Article  CAS  Google Scholar 

  22. Ramya, R., Sivasubramanian, R., and Sangaranarayanan, M.V., Conducting polymers-based electrochemical supercapacitors—Progress and prospects, Electrochim. Acta, 2013, vol. 101, p. 109. https://doi.org/https://doi.org/10.1016/j.electacta.2012.09.116

    Article  CAS  Google Scholar 

  23. Eckermann, A.L., Feld, D.J., Shaw, J.A., and Meade, T.J., Electrochemistry of redox-active self-assembled monolayers, Coord. Chem. Rev., 2010, vol. 254, p. 1769. https://doi.org/10.1016/j.ccr.2009.12.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bott, A.W., Electrochemical techniques for the characterization of redox polymers, Curr. Sep., 2001, vol. 19, no. 3, p. 71.

    CAS  Google Scholar 

  25. Bisquert, J., Garcia-Belmonte, G., Bueno, P., Longo, E., and Bulhões, L.O.S., Impedance of constant phase element (CPE)-blocked diffusion in film electrodes, J. Electroanal. Chem., 1998, vol. 452, p. 229. https://doi.org/10.1016/S0022-0728(98)00115-6

    Article  CAS  Google Scholar 

  26. Gosser, D.K., Jr., Cyclic Voltammetry – Simulation and Analysis of Reaction Mechanisms, VCH, New York, 1993.

    Google Scholar 

  27. Shayani-jam, H., Electrochemical study of adsorption and electrooxidation of 4,4'-biphenol on the glassy carbon electrode: determination of the orientation of adsorbed molecules, Monatsh. Chem., 2019, vol. 150, p. 183. https://doi.org/10.1007/s00706-018-2318-4

    Article  CAS  Google Scholar 

Download references

Funding

The work was performed on the State Assignment for Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences and Institute of Problems of Chemical Physics, Russian Academy of Sciences (State Registration numbers АААА-А19-119041890032-6 and АААА-А19-119071190044-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Pisarevskaya.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Translated by T. Kabanova

Based on the materials of the report at the 15th International Meeting “Fundamental Problems of Solid State Ionics,” Chernogolovka, 30.11.–07.12.2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pisarevskaya, E.Y., Klyuev, A.L., Efimov, O.N. et al. Electrochemical Behavior of Novel Composite Based on Reduced Graphene Oxide, Poly-o-Phenylenediamine, and Silicotungstic Аcid. Russ J Electrochem 57, 921–929 (2021). https://doi.org/10.1134/S1023193521090044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193521090044

Keywords:

Navigation