Skip to main content
Log in

Mediated Electrosynthesis and Catalytic Activity of Nanocomposites Formed by Metal Nanoparticles with Poly(N-vinylpyrrolidone) and Nanocellulose

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Nanoparticles (NP) of Au, Ir, Pd, Pt, and Rh are synthesized by benzimidazo[1',2':1,2]quinolino-[4,3-b][1,2,5]oxodiazolo[3,4-f]quinoxaline (BIQOQ)-mediated electrochemical reduction of AuCl, K3[IrCl6], PdCl2, PtCl2, RhCl3, respectively, in the presence of poly(N-vinylpyrrolidone) (PVP) and nanocellulose (NC) at the potential controlled in the region of generation of BIQOQ. anion radicals in the DMF/0.1 M Bu4NBF4 medium at room temperature. The efficiency of electrosynthesis is shown to be determined by the nature of the substrate to be reduced. K3[IrCl6] is virtually unreducible, whereas the other substrates are reduced to form NP–M. As the theoretical charge is passed, the generated metal is formed in the solution volume rather than as the cathodic deposit. NP–Au particles are formed in the quantitative amount, the mediator is retained in the process. In the other cases, the process consumes from ~50 (Ir, Pd, Pt) to 80% (Rh) of the mediator with the corresponding decrease in the NP–M yield. The synthesis produces individual spherical NP–Pd (4 ± 1 nm) and agglomerates of nanoparticles of gold (78 ± 27 nm), platinum (34 ± 14 nm), and rhodium (33 ± 20 nm) all stabilized in PVP shells. In contrast to the earlier described Ag@PVP nanoparticles which decorated NC in the extremely dense way, these particles are bound only partly with NC. The nanocomposites of Pd, Pt, and Au exhibit catalytic activity in the reactions of reduction of nitroaromatic compounds by sodium borohydride in aqueous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Nanoparticles and Catalysis, Astruc, D., Ed., Wiley-VCH, 2008.

    Google Scholar 

  2. Beller, M. and Bolm, C., Transition Metals for Organic Synthesis, Wiley-VCH, 2008.

    Google Scholar 

  3. Lara, P. and Philippot, K., The hydrogenation of nitroarenes mediated by platinum nanoparticles: an overview, Catal. Sci. Technol., 2014, vol. 4, p. 2445.

    Article  CAS  Google Scholar 

  4. De Meijere, A. and Diederich, F., Metal-Catalyzed Cross-Coupling Reactions, Wiley-VCH, 2008.

    Google Scholar 

  5. Meyer, T.H., Finger, L.H., Gandeepan, P., and Ackermann, L., Resource economy by metallaelectrocatalysis: merging electrochemistry and C–H activation, Trends Chem., 2019, vol. 1, p. 63.

    Article  CAS  Google Scholar 

  6. Ananikov, V.P., Khemchyan, L.L., Ivanova, Yu.V., Bukhtiyarov, V.I., Sorokin, A.M., Prosvirin, I.P., Vatsadze, S.Z., Medved’ko, A.V., Nuriev, V.N., Dilman, A.D., Levin, V.V., Koptyug, I.V., Kovtunov, K.V., Zhivonitko, V.V., Likholobov, V.A., et al., Development of new methods in modern selective organic synthesis: preparation of functionalized molecules with atomic precision, Russ. Chem. Rev., 2014, vol. 83, p. 885.

    Article  CAS  Google Scholar 

  7. Yanilkin, V.V., Nasretdinova, G.R., and Kokorekin, V.A., Mediated electrochemical synthesis of metal nanoparticles, Russ. Chem. Rev., 2018, vol. 87, p. 1080.

    Article  CAS  Google Scholar 

  8. Yanilkin, V.V., Fazleeva, R.R., Nasretdinova, G.R., Osin, Yu.N., Gubaidullin, A.T., and Ziganshina, A.Yu., Two-step one-pot electrosynthesis and catalytic activity of the CoO–CoO∙xH2O supported silver nanoparticles, J. Solid State Electrochem., 2020, vol. 24, p. 829.

    Article  CAS  Google Scholar 

  9. Yanilkin, V.V., Fazleeva, R.R., Nasretdinova, G.R., Osin, Yu. N., Zhukova, N.A., and Mamedov, V.A., Benzimidazo[1',2':1,2]quinolino [4,3-b][1,2,5]oxodiazolo[3,4-f]quinoxaline—New mediator for electrosynthesizing metal nanoparticles, Russ. J. Electrochem., 2020, vol. 56, p. 646.

    Article  CAS  Google Scholar 

  10. Yanilkin, V.V., Nastapova, N.V., Nasretdinova, G.R., Osin, Y.N., Evtugyn, V.G., Ziganshina, A.Y., and Gubaidullin, A.T., Structure and catalytic activity of ultrasmall Rh, Pd and (Rh + Pd) nanoparticles obtained by mediated electrosynthesis, New J. Chem., 2019, vol. 43, p. 3931.

    Article  CAS  Google Scholar 

  11. Nasretdinova, G.R., Fazleeva, R.R., Osin, Yu.N., Evtugin, V.G., Gubaidullin, A.T., Ziganshina, A.Yu., and Yanilkin, V.V., Methylviologen mediated electrochemical eynthesis of catalytically active ultrasmall Pd–Ag bimetallic nanoparticles stabilized by CTAC, Electrochim. Acta, 2018, vol. 285, p. 149.

    Article  CAS  Google Scholar 

  12. Suh, M.P., Metal-organic frameworks and porous coordination polymers: properties and applications, Bull. Jpn. Soc. Coord. Chem., 2015, vol. 65, p. 9.

    Article  Google Scholar 

  13. Caia, X., Denga, X., Xiea, Z., Shia, Y., Panga, M., and Lina, J., Controllable synthesis of highly monodispersed nanoscale Fe-soc-MOF and the construction of Fe-soc-MOF@polypyrrole core–shell nanohybrids for cancer therapy, Chem. Eng. J., 2018, vol. 358, p. 369.

    Article  CAS  Google Scholar 

  14. Gao, X.W., Yang, J., Song, K., Luo, W.B., Dou, S.X., and Kang, Y.M., Robust FeCo nanoparticles embedded in a Ndoped porous carbon framework for high oxygen conversion catalytic activity in alkaline and acidic media, J. Mater. Chem. A, 2018, vol. 46, no. 6, p. 23445.

    Article  Google Scholar 

  15. Sun, Q., Zhai, W., Hou, G., Feng, J., Zhang, L., Si, P., Guo, S., and Ci, L., In situ Synthesis of a Lithiophilic Ag-Nanoparticles-Decorated 3D Porous Carbon Framework toward Dendrite-Free Lithium Metal Anodes, ACS Sustainable Chem. Eng., 2018, vol. 11, no. 6, p. 15219.

    Article  CAS  Google Scholar 

  16. Zhang, S., Wu, Q., Tang, L., Hu, Y., Wang, M.,  Zhao, J., Li, M., Han, J., Liu, X., and Wang, H., Individual high-quality N-doped carbon nanotubes mmbedded with nonprecious metal nanoparticles toward electrochemical reaction, ACS Appl. Mater. Interfaces, 2018, vol. 46, no. 10, p. 39757.

    Article  CAS  Google Scholar 

  17. Wu, Y., Qiu, X., Liang, F., Zhang, Q., Koo, A., Dai, Y., Lei, Y., and Sun, X., A metal-organic framework-derived bifunctional catalyst for hybrid sodium-air batteries, Appl. Catal. B, 2019, vol. 241, p. 407.

    Article  CAS  Google Scholar 

  18. Wu, T., Ma, J., Wang, X., Liu, Y., Xu, H., Gao, J., Wang, W., Liu, Y., and Yan, J., Graphene oxide supported Au–Ag alloy nanoparticles with different shapes and their high catalytic activities, Nanotechnology, 2013, vol. 24, no. 12, p. 125301.

    Article  PubMed  CAS  Google Scholar 

  19. Gan, T., Wang, Z., Shi, Z., Zheng, D., Sun, J., and Liu, Y., Graphene oxide reinforced core–shell structured Ag@Cu2O with tunable hierarchical morphologies and their morphology–dependent electrocatalytic properties for bio-sensing applications, Biosens. Bioelectron., 2018, vol. 112, p. 23.

    Article  CAS  PubMed  Google Scholar 

  20. Wang, L., Wang, L., Zhang, J., Wang, H., and Xiao, F.-S., Enhancement of the activity and durability in CO oxidation over silica-supported Au nanoparticle catalyst via CeOx modification, Chin. J. Catal., 2018, vol. 39, p. 1608.

    Article  CAS  Google Scholar 

  21. Fedorenko, S., Jilkin, M., Nastapova, N., Yanilkin, V., Bochkova, O., Buriliov, V., Nizameev, I., Nasretdinova, G., Kadirov, M., Mustafina, A., and Budnikova, Y., Surface decoration of silica nanoparticles by Pd(0) deposition for catalytic application in aqueous solutions, Colloids Surf., A, 2015, vol. 486, p. 185.

    Article  CAS  Google Scholar 

  22. An, K. and Somorjai, G.A., Nanocatalysis I: Synthesis of Metal and Bimetallic Nanoparticles and Porous Oxides and Their Catalytic Reaction Studies, Catal. Lett., 2015, vol. 145, p. 233.

    Article  CAS  Google Scholar 

  23. Eremenko, A., Smirnova, N., Gnatiuk, I., Linnik, O., Vityuk, N., Mukha, Y., and Korduban, A., Silver and gold nanoparticles on sol–gel TiO2, ZrO2, SiO2 surfaces: Optical spectra, photocatalytic activity, bactericide properties, in Nanocomposites and Polymers with Analytical Methods, Cuppoletti, J., Ed., Croatia: InTech, 2011, p. 404.

    Google Scholar 

  24. Majhi, S.M., Naik, G.K., Lee, H.-J., Song, H.-G., Lee, C.-R., Lee, I.-H., and Yu, Y.-T., Au@NiO core-shell nanoparticles as a p-type gas sensor: Novel synthesis, characterization, and their gas sensing properties with sensing mechanism, Sens. Actuators B, 2018, vol. 268, p. 223.

    Article  CAS  Google Scholar 

  25. Liu, J., Zou, S., Li, S., Liao, X., Hong, Y., Xiao, L., and Fan, J., A general synthesis of mesoporous metal oxides with well-dispersed metal nanoparticles via a versatile sol–gel process, J. Mater. Chem. A, 2013, vol. 1, p. 4038.

    Article  CAS  Google Scholar 

  26. Padbury, R.P., Halbur, J.C., Krommenhoek, P.J., Tracy, J.B., and Jur, J.S., Thermal stability of gold nanoparticles embedded within metal oxide frameworks fabricated by hybrid modifications onto sacrificial textile templates, Langmuir, 2015, vol. 31, no. 3, p. 1135.

    Article  CAS  PubMed  Google Scholar 

  27. Kaushik, M. and Moores, A., Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis, Green Chem., 2016, vol. 18, p. 622.

    Article  CAS  Google Scholar 

  28. Hassner, A. and Namboothiri, I., Organic Syntheses Based on Name Reactions. 3th Ed., Amsterdam: Elsevier, 2012.

    Google Scholar 

  29. Mamedov, V.A., Recent advances in the synthesis of benzimidazol(on)es via rearrangements of quinoxalin(on)es, RSC Adv., 2016, vol. 6, p. 42132.

    Article  CAS  Google Scholar 

  30. Mamedov, V.A., Quinoxalines. Synthesis, Reactions, Mechanisms and Structure. Springer, 2016.

    Google Scholar 

  31. Mamedov, V.A., Zhukova, N.A., Kadyrova, M.S., Fazleeva, R.R., Bazanova, O.B., Beschastnova, T.N., Gubaidullin A.T., Rizvanov, I.K., Yanilkin, V.V., Latypov, S.K., and Sinyashin, O.G., Environmentally friendly and efficient method for the synthesis of the new α,α'-diimine ligands with benzimidazole moiety, J. Heterocycl. Chem., 2020, vol. 57, p. 2466.

    Article  CAS  Google Scholar 

  32. Yanilkin, V.V., Nastapova, N.V., Nasretdinova, G.R., Mukhitova, R.K., Ziganshina, A.Yu., Nizameev, I.R., and Kadirov, M.K., Mediated electrochemical synthesis of Pd0 nanoparticles in solution, Russ J. Electrochem., 2015, vol. 51, p. 951.

    Article  CAS  Google Scholar 

  33. Yanilkin, V.V., Nastapova, N.V., Nasretdinova, G.R., Fazleeva, R.R., and Osin, Yu.N., Molecular oxygen as a mediator in the electrosynthesis of gold nanoparticles in DMF, Electrochem. Commun., 2016, vol. 69, p. 36.

    Article  CAS  Google Scholar 

  34. Yanilkin, V.V., Nastapova, N.V., Fazleeva, R.R., Nasretdinova, G.R., Sultanova, E.D., Ziganshina, A.Yu., Gubaidullin, A.T., Samigullina, A.I., Evtyugin, V.G., Vorob’ev, V.V., and Osin, Yu.N., Molecular oxygen as mediator in the metal nanoparticles’ electrosynthesis in N,N-dimethylformamide, Russ. J. Electrochem., 2018, vol. 54, p. 265.

    Article  CAS  Google Scholar 

  35. Mann, C. and Barnes, K., Electrochemical Reactions in Nonaqueous Systems, New York: Marcel Dekker, 1970.

    Google Scholar 

  36. Fazleeva, R.R., Nasretdinova, G.R., Osin, Yu.N., Ziganshina, A.Yu., and Yanilkin, V.V., Two-step electrosynthesis and catalytic activity of CoO–CoO⋅ xH2O-supported Ag, Au, and Pd nanoparticles, Russ. Chem. Bull., 2020, vol. 69, p. 241.

    Article  CAS  Google Scholar 

  37. Rajender Reddy, K., Kumar, N.S., Surendra Reddy, P., Sreedhar, B., and Lakshmi Kantam, M., Cellulose supported palladium(0) catalyst for Heck and Sonogashira coupling reactions, J. Mol. Catal. A: Chem., 2006, vol. 252, p. 12.

    Article  CAS  Google Scholar 

  38. Koga, H., Tokunaga, E., Hidaka, M., Umemura, Y., Saito, T., Isogai, A., and Kitaoka, T., Topochemical synthesis and catalysis of metal nanoparticles exposed on crystalline cellulose nanofibers, Chem. Commun., 2010, vol. 46. p. 8567.

    Article  CAS  Google Scholar 

  39. Cirtiu, C.M., Dunlop-Brière, A.F., and Moores, A., Cellulose nanocrystallites as an efficient support for nanoparticles of palladium: application for catalytic hydrogenation and Heck coupling under mild conditions, Green Chem., 2011, vol. 13, no. 2, p. 288.

    Article  CAS  Google Scholar 

  40. Lam, E., Hrapovic, S., Majid, E., Chong, J.H., and Luong, J.H.T., Catalysis using gold nanoparticles decorated on nanocrystalline cellulose, Nanoscale, 2012, vol. 4, no. 3, p. 997.

    Article  CAS  PubMed  Google Scholar 

  41. Tang, J., Shi. Z., Berry, R.M., and Tam, K.C., Mussel-inspired green metallization of silver nanoparticles on cellulose nanocrystals and their enhanced catalytic reduction of 4-nitrophenol in the presence of β-cyclodextrin, Ind. Eng. Chem. Res., 2015, vol. 54, p. 3299.

    Article  CAS  Google Scholar 

  42. Kaushik, M. and Moores, A., Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis, Green Chem., 2016, vol. 18, p. 622.

    Article  CAS  Google Scholar 

  43. Chen, L., Cao, W., Quinlan, P.J., Berry, R.M., and Tam, K.C., Sustainable catalysts from gold-loaded polyamidoamine dendrimer-cellulose nanocrystals, ACS Sustain. Chem. Eng., 2015, vol. 3, p. 978.

    Article  CAS  Google Scholar 

  44. Tang, J., Sisler, J., Grishkewich, N., and Tam, K.C., Functionalization of cellulose nanocrystals for advanced applications, J. Colloid Interface Sci., 2017, vol. 494, p. 397.

    Article  CAS  PubMed  Google Scholar 

  45. Eisa, W.H., Abdelgawad, A.M., and Rojas, O.J., Solid-state synthesis of metal nanoparticles supported on cellulose nanocrystals and their catalytic sctivity, ACS Sustain. Chem. Eng., 2018, vol. 6, no. 3, p. 3974.

    Article  CAS  Google Scholar 

  46. Liu, H., Wang, D., Shang, S., and Song, Z., Synthesis and characterization of Ag-Pd alloy nanoparticles/carboxylated cellulose nanocrystals nanocomposites, Carbohydr. Polym., 2011, vol. 83, no. 1, p. 38.

    Article  CAS  Google Scholar 

  47. Liu, H., Wang, D., Song, Z., and Shang, S., Preparation of silver nanoparticles on cellulose nanocrystals and the application in electrochemical detection of DNA hybridization, Cellulose, 2011, vol. 18, no. 1, p. 67.

    Article  CAS  Google Scholar 

  48. Schlesinger, M., Giese, M., Blusch, L.K., Hamad, W.Y., and MacLachlan, M.J., Chiral nematic cellulose-gold nanoparticle composites from mesoporous photonic cellulose, Chem. Commun., 2015, vol. 51, p. 530.

    Article  CAS  Google Scholar 

  49. Zhang, T., Wang, W., Zhang, D., Zhang, X., Ma, Y., Zhou, Y., and Qi, L., Biotemplated synthesis of gold nanoparticle–bacteria cellulose nanofiber nanocomposites and their application in biosensing, Adv. Funct. Mater., 2010, vol. 20, p. 1152.

    Article  CAS  Google Scholar 

  50. Wang, W., Zhang, T.J., Zhang, D.W., Li, H.Y., Ma, Y.R., Qi, L.M., Zhou, Y.L., and Zhang, X.X., Amperometric hydrogen peroxide biosensor based on the immobilization of heme proteins on gold nanoparticles–bacteria cellulose nanofibers nanocomposite, Talanta, 2011, vol. 84, p. 71.

    Article  CAS  PubMed  Google Scholar 

  51. Drogat, N., Granet, R., Sol, V., Memmi, A., Saad, N., Koerkamp, C.K., Bressollier, P., and Krausz, P., Antimicrobial silver nanoparticles generated on cellulose nanocrystals, J. Nanoparticle Res., 2011, vol. 13, no. 4, p. 1557.

    Article  CAS  Google Scholar 

  52. Berndt, S., Wesarg, F., Wiegand, C., Kralisch, D., and Müller, F.A., Antimicrobial porous hybrids consisting of bacterial nanocellulose and silver nanoparticles, Cellulose, 2013, vol. 20, p. 771.

    Article  CAS  Google Scholar 

Download references

Funding

This study was partially supported by the Russian Foundation for Basic Research (project no. 17-03-00280). XRD studies were carried out in the Department of XRD studies of the Center of Collective Use on the basis of the Laboratory of Diffraction Research Techniques of the Arbuzov Institute of Organic and Physical Chemistry, Kazan Research Center, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Yanilkin.

Ethics declarations

The authors declare the absence of any conflict of interests.

Additional information

Translated by T. Safonova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yanilkin, V.V., Fazleeva, R.R., Nasretdinova, G.R. et al. Mediated Electrosynthesis and Catalytic Activity of Nanocomposites Formed by Metal Nanoparticles with Poly(N-vinylpyrrolidone) and Nanocellulose. Russ J Electrochem 57, 30–40 (2021). https://doi.org/10.1134/S1023193521010110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193521010110

Keywords:

Navigation