Skip to main content
Log in

Fabrication of a Novel Electrochemical Sensor for Determination of Riboflavin in Different Drink Real Samples

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

In the present study an electrochemical sensor has been produced for measuring riboflavin with high sensitivity and selectivity. Deferential pulse technique has been used to measure the current of riboflavin on the modified glassy carbon electrode. At first, the synthesis of the GO/Au/polyEAmVS nanocomposite was performed. Synthetic nanocomposite was characterized by TEM and XRD methods and it was used for modification of glassy carbon electrode. Effective conditions were optimized for the measurement of riboflavin including pH and buffer concentration and modifier concentration. Calibration curve was linear in the concentration range of 1.0–100.0 μM under optimal conditions. A detection limit of 7.2 × 10–2 μM and relative standard deviation of 3.79% have been obtained. The prepared sensor has a good performance for measuring the amount of riboflavin in drink real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Yin, C., Cao, Y., Ding, S., and Wang, Y., Rapid determination of water-and fat-soluble vitamins with microemulsion electrokinetic chromatography, J. Chromatogr. A, 2008, vol. 1193, p. 172.

    Article  CAS  PubMed  Google Scholar 

  2. Powers, H.J., Riboflavin (vitamin (vitamin B-2) and health, Am. J. Clin. Nutr., 2003, vol. 77, p. 1352.

    Article  CAS  PubMed  Google Scholar 

  3. Voicescu, M., Ionita, G., Beteringhe, A., Vasilescu, M., and Meghea, A., The antioxidative activity of riboflavin in the presence of antipyrin, J. Fluoresc., 2008, vol. 18, p. 953.

    Article  CAS  PubMed  Google Scholar 

  4. Kotkar, R.M., Desai, P.B., and Srivastava, A.K., Behavior of riboflavin on plain carbon paste and aza macrocycles based chemically modified electrodes, Sens. Actuat. B-Chem., 2007, vol. 124, p. 90.

    Article  CAS  Google Scholar 

  5. Lavanya, N., Radhakrishnan, S., Sekar, C., Navaneethan, M., and Hayakawa, Y., Fabrication of Cr doped SnO2 nanoparticles based biosensor for the selective determination of riboflavin in pharmaceuticals, Analyst., 2013, vol. 138, p. 2061.

    Article  CAS  PubMed  Google Scholar 

  6. Perez-Ruiz, T., Martínez-Lozano, C., Tomás, V., and Val, O., Photochemical spectrophotometric determination of riboflavin and riboflavin 5′-phosphate by manual and flow injection methods, Analyst, 1994, vol. 119, p. 1199.

    Article  CAS  Google Scholar 

  7. López-Leytón, T.L., Yusty, M.L., and Piñeiro, M.A., Constant-wavelength synchronous spectrofluorimetry for determination of riboflavin in anchovies, J. Anal. Chem., 1998, vol. 362, p. 341.

    Google Scholar 

  8. Mandal, S.M., Mandal, M., Ghosh, A.K., and Dey, S., Rapid determination of vitamin B2 and B12 in human urine by isocratic liquid chromatography, Anal. Chim. Acta, 2009, vol. 640, p. 110.

    Article  CAS  PubMed  Google Scholar 

  9. Sikorska, E., Gliszczyńska-Świgło, A., Insińska-Rak, M., Khmelinskii, I., De Keukeleire, D., and Sikorski, M., Simultaneous analysis of riboflavin and aromatic amino acids in beer using fluorescence and multivariate calibration methods, Anal. Chim. Acta, 2008, vol. 613, p. 207.

    Article  CAS  PubMed  Google Scholar 

  10. Niazi, A., Yazdanipour, A., Ghasemi, J., and Abbasi, A., Determination of riboflavin in human plasma by excitation-emission matrix fluorescence and multi-way analysis, J. Chin. Chem. Soc., 2006, vol. 53, p. 503.

    Article  CAS  Google Scholar 

  11. Wang, X.M. and Chen, H.Y., A spectroelectrochemical study of the interaction of riboflavin with β-cyclodextrin, Spectrochim. Acta A, 1996, vol. 52, p. 599.

    Article  Google Scholar 

  12. Gliszczyńska-Świgło, A. and Koziołowa, A., Chromatographic determination of riboflavin and its derivatives in food, J. Chromatogr A, 2000, vol. 881, p. 285.

    Article  PubMed  Google Scholar 

  13. Jakobsen, J., Optimisation of the determination of thiamin, 2-(1-hydroxyethyl) thiamin, and riboflavin in food samples by use of HPLC, Food Chem., 2008, vol. 106, p. 1209.

    Article  CAS  Google Scholar 

  14. Roushani, M., Abdi, Z., Daneshfar, A., and Salimi, A., Hydrogen peroxide sensor based on riboflavin immobilized at the nickel oxide nanoparticle-modified glassy carbon electrode, J. Appl. Electrochem., 2013, vol. 43, p. 1175.

    Article  CAS  Google Scholar 

  15. Anisimova, L.S., Mikheeva, E.V., and Slipchenko, V.F., Voltammetric determination of riboflavin in vitaminized supplements and feeds, J. Anal. Chem., 2001, vol. 56, p. 658.

    Article  CAS  Google Scholar 

  16. Safavi, A., Maleki, N., Ershadifar, H., and Tajabadi, F., Development of a sensitive and selective riboflavin sensor based on carbon ionic liquid electrode, Anal. Chim. Acta, 2010, vol. 674, p. 176.

    Article  CAS  PubMed  Google Scholar 

  17. Kang, J., Kim, T., Tak, Y., Lee, J.H., and Yoon, J., Cyclic voltammetry for monitoring bacterial attachment and biofilm formation, J. Ind. Eng. Chem., 2012, vol. 18, p. 800.

    Article  CAS  Google Scholar 

  18. Chatterjee, A. and Foord, J.S., Biological applications of diamond electrodes; electrochemical studies of riboflavin, Diamond. Relat. Mater., 2009, vol. 18, p. 899.

    Article  CAS  Google Scholar 

  19. Pereira, A.C., Santos, A., and Kubota, L.T., Electrochemical behavior of riboflavin immobilized on different matrices, J. Colloid. Interface. Sci., 2003, vol. 265, p. 351.

    Article  CAS  PubMed  Google Scholar 

  20. Ly, S.Y., Yoo, H.S., and Ahn, J.Y., Pico molar assay of riboflavin in human urine using voltammetry, Food Chem., 2011, vol. 127, p. 270.

    Article  CAS  Google Scholar 

  21. Wang, Y., Xu, B., Zhu, G., and Wang, E., Electrochemical quartz crystal microbalance study of the electrochemical behavior of riboflavin at gold electrodes, Electroanalysis, 1997, vol. 9, p. 1422.

    Article  CAS  Google Scholar 

  22. Zhu, C., Yang, G., Li, H., Du, D., and Lin, Y., Electrochemical sensors and biosensors based on nanomaterials and nanostructures, Anal. Chem., 2014, vol. 87, p. 230.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Lu, W., Wallace, G.G., and Karayakin, A.A., Use of Prussian blue/conducting polymer modified electrodes for the detection of cytochrome C, Electroanalysis, 1998, vol. 10, p. 472.

    Article  CAS  Google Scholar 

  24. Opallo, M. and Lesniewski, A., A review on electrodes modified with ionic liquids, J. Electroanal. Chem., 2011, vol. 656, p. 2.

    Article  CAS  Google Scholar 

  25. Bai, H. and Shi, G., Gas sensors based on conducting polymers, Sensors, 2007, vol. 7, p. 267.

    Article  CAS  PubMed Central  Google Scholar 

  26. Sun, X., Liu, Z., Welsher, K., Robinson, J.T., Goodwin, A., Zaric, S., and Dai, H., Nano-graphene oxide for cellular imaging and drug delivery, Nano Res., 2008, vol. 1, p. 203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bielawski, C.W., Dreyer, D.R., Park, S., and Ruoff, R.S., The chemistry of grapheme oxide, Chem. Soc. Rev., 2010, vol. 39, p. 228.

    Article  PubMed  Google Scholar 

  28. Wei, Z., Barlow, D.E., and Sheehan, P.E., The assembly of single-layer graphene oxide and graphene using molecular templates, Nano Lett., 2008, vol. 8, p. 3141.

    Article  CAS  PubMed  Google Scholar 

  29. Ge, S., Yan, M., Lu, J., Yu, F., Yu, J., Song, X., and Yu, S., Electrochemical biosensor based on graphene oxide-Au nanoclusters composites for l-cysteine analysis, Biosens. Bioelectron., 2012, vol. 31, p. 49.

    Article  CAS  PubMed  Google Scholar 

  30. Erdem, A., Muti, M., Papakonstantinou, P., Canavar, E., Karadeniz, H., Congur, G., and Sharma, S., Graphene oxide integrated sensor for electrochemical monitoring of mitomycin C-DNA interaction, Analyst, 2012, vol. 137, p. 2129.

    Article  CAS  PubMed  Google Scholar 

  31. Song, Y., He, Z., Hou, H., Wang, X., and Wang, L., Architecture of Fe3O4-graphene oxide nanocomposite and its application as a platform for amino acid biosensing, Electrochim. Acta, 2012, vol. 71, p. 58.

    Article  CAS  Google Scholar 

  32. Lou, T., Chen, Z., Wang, Y., and Chen, L., Blue-to-red colorimetric sensing strategy for Hg2+ and Ag+ via redox-regulated surface chemistry of gold nanoparticles, ACS Appl. Mater. Interfaces, 2011, vol. 3, p. 1568.

    Article  CAS  PubMed  Google Scholar 

  33. Tang, Z., Shen, S., Zhuang, J., and Wang, X., Noble metal promoted three-dimensional macroassembly of single-layered graphene oxide, Angew. Chem., 2010, vol. 122, p. 4707.

    Article  Google Scholar 

  34. Wang, Y., Lu, J., Tang, L., Chang, H., and Li, J., Graphene oxide amplified electrogenerated chemiluminescence of quantum dots and its selective sensing for glutathione from thiol-containing compounds, Anal. Chem., 2009, vol. 81, p. 9710.

    Article  CAS  PubMed  Google Scholar 

  35. Bai, H., Li, C., and Shi, G., Functional composite materials based on chemically converted graphene, Adv. Mater., 2011, vol. 23, p. 1089.

    Article  CAS  PubMed  Google Scholar 

  36. Cote, L.J., Cruz-Silva, R., and Huang, J., Flash reduction and patterning of graphite oxide and its polymer composite, J. Am. Chem. Soc., 2009, vol. 131, p. 11027.

    Article  CAS  PubMed  Google Scholar 

  37. Gong, J., Zhou, T., Song, D., and Zhang, L., Monodispersed Au nanoparticles decorated graphene as an enhanced sensing platform for ultrasensitive stripping voltammetric detection of mercury(II), Sens. Actuat. B, 2010, vol. 150, p. 491.

    Article  CAS  Google Scholar 

  38. Liu, H., Liu, Y., and Li, J., Ionic liquids in surface electrochemistry, Phys. Chem. Chem. Phys., 2010, vol. 12, p. 685.

    Google Scholar 

  39. McEwen, A.B., Ngo, H.L., LeCompte, K., and Goldman, J.L., Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications, J. Electrochem. Soc., 1999, vol. 146, p. 1687.

    Article  CAS  Google Scholar 

  40. Yang, H., Shan, C., Li, F., Han, D., Zhang, Q., and Niu, L., Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid, Chem. Commun., 2009, vol. 26, p. 3880.

    Article  CAS  Google Scholar 

  41. Mecerreyes, D., Polymeric ionic liquids: broadening the properties and applications of polyelectrolytes, Prog. Polym. Sci., 2011, vol. 36, p. 1629.

    Article  CAS  Google Scholar 

  42. Ogihara, W., Washiro, S., Nakajima, H., and Ohno, H., Effect of cation structure on the electrochemical and thermal properties of ion conductive polymers obtained from polymerizable ionic liquids, Electrochim. Acta, 2006, vol. 51, p. 2614.

    Article  CAS  Google Scholar 

  43. Molaakbari, E., Mostafavi, A., Beitollahi, H., and Tohidiyan, Z., Synthesis of conductive polymeric ionic liquid/Ni nanocomposite and its application to construct a nanostructure based electrochemical sensor for determination of warfarin in the presence of tramadol, Talanta, 2017, vol. 171, p. 25.

    Article  CAS  PubMed  Google Scholar 

  44. Molaakbari, E., Mostafavi, A., Tohidiyan, Z., and Beitollahi, H., Synthesis and application of conductive polymeric ionic liquid/Ni nanocomposite to construct a nanostructure based electrochemical sensor for determination of risperidone and methylphenidate, J. Electroanal. Chem., 2017, vol. 801, p. 198.

    Article  CAS  Google Scholar 

  45. Ohno, H., Yoshizawa, M., and Ogihara, W., Development of new class of ion conductive polymers based on ionic liquids, Electrochim. Acta, 2004, vol. 50, p. 255.

    Article  CAS  Google Scholar 

  46. Merza, K.S., Al-Attabi, H.D., Abbas, Z.M., and Yusr, H.A., Comparative study on methods for preparation of gold nanoparticles, Green Sust.Chem., 2012, vol. 2, p. 26.

    CAS  Google Scholar 

  47. Klug, H.P. and Alexander, L.E., X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, New York: Wiley, 1964.

    Google Scholar 

  48. Gribat, L.C., Babauta, J.T., Beyenal, H., and Wall, N.A., New rotating disk hematite film electrode for riboflavin detection, J. Electroanal. Chem., 2017, vol. 798, p. 42.

    Article  CAS  Google Scholar 

  49. Madhuvilakku, R., Alagar, S., Mariappan, R., and Piraman, S., Green one-pot synthesis of flowers-like Fe3O4/rGO hybrid nanocomposites for effective electrochemical detection of riboflavin and low-cost supercapacitor applications, Sensor. Actuat.B-Chem., 2017, vol. 253, p. 879.

    CAS  Google Scholar 

  50. Shadjou, N., Hasanzadeh, M., and Omari, A., Electrochemical quantification of some water soluble vitamins in commercial multi-vitamin using poly-amino acid caped by graphene quantum dots nanocomposite as dual signal amplification elements, Anal. Biochem., 2017, vol. 539, p. 70.

    Article  CAS  PubMed  Google Scholar 

  51. Sá, É.S., da Silva, P.S., Jost, C.L. and Spinelli, A., Electrochemical sensor based on bismuth-film electrode for voltammetric studies on vitamin B2 (riboflavin), Sens. Actuat. B-Chem., 2015, vol. 209, p. 423.

    Article  CAS  Google Scholar 

  52. Kowalczyk, A., Sadowska, M., Krasnodebska-Ostrega, B., and Nowicka, A.M., Selective and sensitive electrochemical device for direct VB2 determination in real products, Talanta, 2017, vol. 163, p. 72.

    Article  CAS  PubMed  Google Scholar 

  53. Sumathi, C., Muthukumaran, P., Radhakrishnan, S., Ravi, G., and Wilson, J., Riboflavin detection by α‑Fe2O3/MWCNT/AuNPs-based composite and a study of the interaction of riboflavin with DNA, RSC. Adv., 2015, vol. 5, p. 17888.

    Article  CAS  Google Scholar 

  54. Santos, T.A., Barreto, L.N., Ritta, A.G.S., De Meneses, W.S., Nunes, R.S., and Semaan, F.S., Cost-effective composite electrode for the fast voltammetric screening and determination of riboflavin (B2) and pyridoxine (B6) in pharmaceuticals, Rev. Virtual Quim., 2013, vol. 5, no. 4, pp. 548–562.

    Article  Google Scholar 

  55. Wang, Y., Zhuang, Q., and Ni, Y., Fabrication of riboflavin electrochemical sensor based on homoadenine single-stranded DNA/molybdenum disulfide-graphene nanocomposite modified gold electrode, J. Electroanal. Chem., 2015, vol. 736, p. 47.

    Article  CAS  Google Scholar 

  56. Nezamzadeh-Ejhieh, A. and Pouladsaz, P., Voltammetric determination of riboflavin based on electrocatalytic oxidation at zeolite-modified carbon paste electrodes, J. Ind. Eng. Chem., 2014, vol. 20, p. 2146.

    Article  CAS  Google Scholar 

  57. Lavanya, N., Radhakrishnan, S., Sekar, C., Navaneethan, M., and Hayakawa, Y., Fabrication of Cr doped SnO2 nanoparticles based biosensor for the selective determination of riboflavin in pharmaceuticals, Analyst, 2013, vol. 138, p. 2061.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Molaakbari.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derakhshan, M., Shamspur, T., Molaakbari, E. et al. Fabrication of a Novel Electrochemical Sensor for Determination of Riboflavin in Different Drink Real Samples. Russ J Electrochem 56, 181–188 (2020). https://doi.org/10.1134/S1023193520030039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193520030039

Keywords:

Navigation