Skip to main content
Log in

The role of migration mass transfer in the electrodeposition of nickel from sulfate-chloride and chloride solutions containing succinic acid

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The electrodeposition of nickel from 0.5 M sulfate-succinate-chloride (I) and 0.3 and 0.5 M chloride-cuccinate (II) solutions at a temperature of 50°C is studied. It is found that, depending on the pH0 of solution and the concentration of succinic acid and nickel, the maximum cathodic current density for producing high-quality nickel deposits is to 35 A/dm2 in electrolytes I and to 60 A/dm2 in electrolytes II. This corresponds to the metal deposition rates to 23 and 48 A/dm2, respectively. It is shown experimentally that high buffer properties of solutions (succinate buffer) are one of the reasons for high permissible current densities of nickel electrodeposition. The computer-calculated data showed that the intensification of nickel electrodeposition is caused also by the acceleration of mass transfer due to the presence of a considerable fraction of nickel in the form of positively charged complexes and a high concentration of components stabilizing pHS in the near-cathode layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bek, R.Yu., Tsupak, T.E., and Shuraeva, L.I., Gal’vanotekh. Obrab. Poverkhn., 1992, vol. 2, p. 5.

    Google Scholar 

  2. Bek, R.Yu., Tsupak, T.E., and Shuraeva, L.I., Elektrokhimiya, 1998, vol. 34, p. 182 [Russ. J. Elektrochem. (Engl. Transl.), vol. 34, p. 165].

    Google Scholar 

  3. Lainer, V.I. and Kudryavtsev, N.T., Osnovy gal’vanostegii: (Fundamentals of Electroplating), Moscow: Metallurgizdat, 1953, part 1.

    Google Scholar 

  4. Gal’dikene, O.K. and Matulis, Yu.Yu., Tr. AN Lit. SSR, Ser. B., 1964, no. 4 (39), p. 61.

  5. Tsupak, T.E., Bud’ko, V.P., Mekhtiev, M.A., and Kudryavtsev, N.T., in Noveishie dostizheniya v oblasti elektrokhimicheskoi obrabotki poverkhnosti metallov (Advances in the Field of Electrochemical Treatment of Metal Surface), Moscow: MKhTI, 1977, no. 95, p. 42.

    Google Scholar 

  6. Kudryavtsev, N.T., Tsupak, T.E., and Markina, V.V., USSR Inventor’s Certificate no. 281 986 (1970).

  7. Kudryavtsev, N.T., Tsupak, T.E., and Marchenkov, Yu.M., USSR Inventor’s Certificate no. 508 564 (1976).

  8. Kudryavtsev, N.T., Tsupak, T.E., Mekhtiev, M.A., and Marchenkov, Yu.M., Zashch. Met., 1977, vol. 13, p. 618.

    CAS  Google Scholar 

  9. Bek, R.Yu., Shuraeva, L.I., and Tsupak, T.E., Khim. Interesah Ustoich. Razvit., 1994, vol. 2, p. 589.

    Google Scholar 

  10. Tsupak, T.E., Bek, R.Yu., and Borodikhina, L.I., Elektrokhimiya, 1982, vol. 18, p. 86.

    CAS  Google Scholar 

  11. Bek, R.Yu., Tsupak, T.E., Shuraeva, L.I., and Kopteva, N.I., Zh. Prikl. Khim., 1996, vol. 69, p. 1880.

    CAS  Google Scholar 

  12. Bek, R.Yu., Tsupak, T.E., Nguen Zui Shi, Borodikhina, L.I. Elektrokhimiya, 1985, vol. 21, p. 1190.

    CAS  Google Scholar 

  13. Campi, E., Ann. Chim. (Roma), 1963, vol. 53, p. 553.

    Google Scholar 

  14. Smith, R.M. and Martel, A.E., Critical Stability Constants. V. 4. Inorganic Complexes, New York: Plenum, 1976.

    Google Scholar 

  15. Morris, D.E., Reed, G.L., Short, E.L., Slater, D.N., and Waters, D.N., J. Inorg. Nucl. Chem., 1965, no. 27, p. 377.

  16. Dobos, D., Electrochemical Data. A Handbook for Electrochemists in Industry and Universities. Budapest: Akadémiai Kiadó, 1978.

    Google Scholar 

  17. McAuley, A. and Nancollas G. H., J. Chem. Soc., 1961, p. 4458.

  18. Fedorenko, R.P., Vvedenie v vychislitel’nuyu fiziku (Introduction to Computational Physics), Moscow: Mosk. Fiz.-Tekhn. Inst., 1994.

    Google Scholar 

  19. Ibl, N. and Venczel, J., Metalloberfläche, 1970, vol. 10, p. 365.

    Google Scholar 

  20. Bek, R. Yu. and Tsupak, T.E., Elektrokhimiya, 1987, vol. 23, p. 560.

    CAS  Google Scholar 

  21. Brzyska, W. and Galkowska, B., Pol. J. Chem., 1998, vol. 72, p. 498.

    CAS  Google Scholar 

  22. Kheifits, V.L., Rotinyan, A.L., and Kozich, E.N., Zh. Obshch. Khim., 1954, vol. 24, p. 1486.

    Google Scholar 

  23. Bek, R.Yu., Shuraeva, L.K., and Tsupak, T.E., Zh. Prikl. Khim., 1998, vol. 71, p. 70.

    CAS  Google Scholar 

  24. Kharkats, Yu.I., Itogi Nauki Tekh., Ser.: Elektrokhim., Moscow: VINITI, 1991, vol. 38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Tsupak.

Additional information

Original Russian Text © A.A. Sedoikin, T.E. Tsupak, 2008, published in Elektrokhimiya, 2008, Vol. 44, No. 3, pp. 343–350.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sedoikin, A.A., Tsupak, T.E. The role of migration mass transfer in the electrodeposition of nickel from sulfate-chloride and chloride solutions containing succinic acid. Russ J Electrochem 44, 319–326 (2008). https://doi.org/10.1134/S1023193508030099

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193508030099

Key words

Navigation