Skip to main content
Log in

Improving Genome Assembly of Flax Line 3896 with High-Precision Illumina Reads

  • SHORT COMMUNICATIONS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Flax (Linum usitatissimum L.) is a valuable agricultural crop grown for seed and fiber. Complete and accurate genome assemblies are the basis for molecular genetic studies and efficient breeding of flax. In the present work, we aimed to improve the accuracy of the Nanopore-assembled genome of line 3896, which is currently a reference genome for L. usitatissimum in the NCBI database. We sequenced the DNA of this line on the Illumina platform and obtained about 50× flax genome coverage. High-precision Illumina reads were used to polish the genome assembly of line 3896 by the POLCA tool. This significantly increased the accuracy of the assembly, which was reflected in the QUAST reference-based statistics, primarily in a drastic reduction in the number of single nucleotide polymorphisms (SNPs) and insertions/deletions (InDels). We also demonstrated the effect of polishing with Illumina reads on individual gene sequences. This procedure allowed us to correct erroneous SNPs and InDels in 14 of 25 examined genes of the SAD and FAD families, including those causing erroneous frameshifts and amino acid substitutions. Thus, we significantly improved the genome assembly of flax line 3896 and increased its value for basic and applied research on L. usitatissimum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Muir, A.D. and Westcott, N.D., Flax: The Genus Linum, London: CRC Press, 2003.

    Book  Google Scholar 

  2. Santos, H.O., Price, J.C., and Bueno, A.A., Beyond fish oil supplementation: the effects of alternative plant sources of omega-3 polyunsaturated fatty acids upon lipid indexes and cardiometabolic biomarkers—an overview, Nutrients, 2020, vol. 12, p. 3159. https://doi.org/10.3390/nu12103159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Melelli, A., Jamme, F., Beaugrand, J., et al., Evolution of the ultrastructure and polysaccharide composition of flax fibres over time: when history meets science, Carbohydr. Polym., 2022, vol. 291, p. 119584. https://doi.org/10.1016/j.carbpol.2022.119584

    Article  PubMed  CAS  Google Scholar 

  4. Kaur, V., Singh, M., Wankhede, D.P., et al., Diversity of Linum genetic resources in global genebanks: from agro-morphological characterisation to novel genomic technologies—a review, Front. Nutr., 2023, vol. 10, p. 1165580. https://doi.org/10.3389/fnut.2023.1165580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Assaedi, H., Alomayri, T., Shaikh, F., et al., Synthesis and mechanical properties of flax fabric reinforced geopolymer composites, Adv. Mater. Res., 2014, vol. 3, pp. 151—161. https://doi.org/10.12989/amr.2014.3.3.151

    Article  Google Scholar 

  6. Chen, C., Li, C., Zhou, Y., et al., Applying flax FRP in an innovative closed-shape stirrup for concrete beams, Materials, 2022, vol. 15, p. 2927. https://doi.org/10.3390/ma15082927

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Stavropoulos, P., Mavroeidis, A., Papadopoulos, G., et al., On the path towards a “Greener” EU: a mini review on flax (Linum usitatissimum L.) as a case study, Plants, 2023, vol. 12, p. 1102. https://doi.org/10.3390/plants12051102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Sa, R., Yi, L., Siqin, B., et al., Chromosome-level genome assembly and annotation of the fiber flax (Linum usitatissimum) genome, Front. Genet., 2021, vol. 12, p. 735690. https://doi.org/10.3389/fgene.2021.735690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Wang, Z., Hobson, N., Galindo, L., et al., The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads, Plant J.: Cell Mol. Biol., 2012, vol. 72, pp. 461—473. https://doi.org/10.1111/j.1365-313X.2012.05093.x

    Article  CAS  Google Scholar 

  10. You, F.M., Xiao, J., Li, P., et al., Chromosome-scale pseudomolecules refined by optical, physical and genetic maps in flax, Plant J.: Cell Mol. Biol., 2018, vol. 95, pp. 371—384. https://doi.org/10.1111/tpj.13944

    Article  CAS  Google Scholar 

  11. Zhang, J., Qi, Y., Wang, L., et al., Genomic comparison and population diversity analysis provide insights into the domestication and improvement of flax, iScience, 2020, vol. 23, p. 100967. https://doi.org/10.1016/j.isci.2020.100967

  12. Dmitriev, A.A., Pushkova, E.N., Novakovskiy, R.O., et al., Genome sequencing of fiber flax cultivar Atlant using Oxford Nanopore and Illumina platforms, Front. Genet., 2020, vol. 11, p. 590282. https://doi.org/10.3389/fgene.2020.590282

    Article  PubMed  CAS  Google Scholar 

  13. Dvorianinova, E.M., Bolsheva, N.L., Pushkova, E.N., et al., Isolating Linum usitatissimum L. nuclear DNA enabled assembling high-quality genome, Int. J. Mol. Sci., 2022, vol. 23, p. 13244. https://doi.org/10.3390/ijms232113244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Zhao, X., Yi, L., Zuo, Y., et al., High-quality genome assembly and genome-wide association study of male sterility provide resources for flax improvement, Plants, 2023, vol. 12, p. 2773. https://doi.org/10.3390/plants12152773

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Pucker, B., Irisarri, I., de Vries, J., et al., Plant genome sequence assembly in the era of long reads: progress, challenges and future directions, Quant. Plant Biol., 2022, vol. 3, p. e5. https://doi.org/10.1017/qpb.2021.18

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dmitriev, A.A., Pushkova, E.N., and Melnikova, N.V., Plant genome sequencing: modern technologies and novel opportunities for breeding, Mol. Biol. (Moscow), 2022, vol. 56, pp. 495—507. https://doi.org/10.1134/S0026893322040045

    Article  CAS  Google Scholar 

  17. Lee, J.Y., Kong, M., Oh, J., et al., Comparative evaluation of Nanopore polishing tools for microbial genome assembly and polishing strategies for downstream analysis, Sci. Rep., 2021, vol. 11, p. 20740. https://doi.org/10.1038/s41598-021-00178-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Dmitriev, A.A., Kezimana, P., Rozhmina, T.A., et al., Genetic diversity of SAD and FAD genes responsible for the fatty acid composition in flax cultivars and lines, BMC Plant Biol., 2020, vol. 20, p. 301. https://doi.org/10.1186/s12870-020-02499-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Melnikova, N.V., Pushkova, E.N., Dvorianinova, E.M., et al., Genome assembly and sex-determining region of male and female Populus × sibirica, Front. Plant Sci., 2021, vol. 12, p. 625416. https://doi.org/10.3389/fpls.2021.625416

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zimin, A.V., Puiu, D., Luo, M.C., et al., Hybrid assembly of the large and highly repetitive genome of Aegilops tauschii, a progenitor of bread wheat, with the MaSuRCA mega-reads algorithm, Genome Res., 2017, vol. 27, pp. 787—792. https://doi.org/10.1101/gr.213405.116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Bolger, A.M., Lohse, M., and Usadel, B., Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics, 2014, vol. 30, pp. 2114—2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Gurevich, A., Saveliev, V., Vyahhi, N., et al., QUAST: quality assessment tool for genome assemblies, Bioinformatics, 2013, vol. 29, pp. 1072—1075. https://doi.org/10.1093/bioinformatics/btt086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Seppey, M., Manni, M., and Zdobnov, E.M., BUSCO: assessing genome assembly and annotation completeness, Methods Mol. Biol., 2019, vol. 1962, pp. 227—245. https://doi.org/10.1007/978-1-4939-9173-0_14

    Article  PubMed  CAS  Google Scholar 

  24. Kazaz, S., Miray, R., Lepiniec, L., et al., Plant monounsaturated fatty acids: diversity, biosynthesis, functions and uses, Progr. Lipid Res., 2022, vol. 85, p. 101138. https://doi.org/10.1016/j.plipres.2021.101138

    Article  CAS  Google Scholar 

  25. You, F.M., Li, P., Kumar, S., et al., Genome-wide identification and characterization of the gene families controlling fatty acid biosynthesis in flax (Linum usitatissimum L.), J. Proteomics Bioinf., 2014, vol. 7, pp. 310—326.

    Google Scholar 

  26. Thambugala, D., Ragupathy, R., and Cloutier, S., Structural organization of fatty acid desaturase loci in linseed lines with contrasting linolenic acid contents, Funct. Integr. Genomics, 2016, vol. 16, pp. 429—439. https://doi.org/10.1007/s10142-016-0494-z

    Article  PubMed  CAS  Google Scholar 

  27. Povkhova, L.V., Pushkova, E.N., Rozhmina, T.A., et al., Development and complex application of methods for the identification of mutations in the FAD3A and FAD3B genes resulting in the reduced content of linolenic acid in flax oil, Plants, 2022, vol. 12, p. 95. https://doi.org/10.3390/plants12010095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Thambugala, D., Duguid, S., Loewen, E., et al., Genetic variation of six desaturase genes in flax and their impact on fatty acid composition, Theor. Appl. Genet., 2013, vol. 126, pp. 2627—2641. https://doi.org/10.1007/s00122-013-2161-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed using the equipment of EIMB RAS “Genome” center (http://www.eimb.ru/ru1/ckp/ccu_ genome_ce.php).

Funding

The work was financially supported by the Ministry of Science and Higher Education of the Russian Federation, grant no. 075-15-2021-1064 (genome assembly polishing) and Russian Science Foundation, grant no. 21-16-00111 (analysis of SAD and FAD genes).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Dmitriev.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dvorianinova, E.M., Pushkova, E.N., Bolsheva, N.L. et al. Improving Genome Assembly of Flax Line 3896 with High-Precision Illumina Reads. Russ J Genet 59 (Suppl 2), S237–S240 (2023). https://doi.org/10.1134/S102279542314003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279542314003X

Keywords:

Navigation