Skip to main content
Log in

LncRNA CTBP1-AS2 Influences Cellular Activities via miR-381-3p/ID1 Axis in Breast Cancer

  • HUMAN GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

LncRNAs are involved in a variety of physiological and pathological processes. Whereas, the putative role of lncRNAs in breast cancer remains largely elusive. Herein, we investigated the influence of lncRNA CTBP1-AS2 in breast cancer. The expression of lncRNA CTBP1-AS2 was detected in breast cancer tissues. The possible clinical value of CTBP1-AS2 was evaluated using the Kaplan–Meier curve. The influences of CTBP1-AS2 on tumor cell abilities were determined by in vitro experiments. Online databases and dual-luciferase reporter assay were used to reveal the interaction between CTBP1-AS2, miR-381-3p, and ID1. LncRNA CTBP1-AS2 expression showed rising trend in breast cancer tissues and forecasted a poor survival outcome in breast cancer patients. Functionally, CTBP1-AS2 knockdown inhibited tumor cell growth and invasion in vitro. Mechanistically, CTBP1-AS2 may competitively bind with miR-381-3p and then regulate ID1 to act as a tumor-promoter in breast cancer. Collectively, these results reveal the potential role of lncRNA CTBP1-AS2 in breast cancer and a novel CTBP1-AS2/miR-381-3p/ID1 pathway for tumor progression and suggest that CTBP1-AS2 may be a potential prognostic predictor and therapeutic target for patients with breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Cao, W., Chen, H.D., Yu, Y.W., et al., Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020, Chin. Med. J., 2021, vol. 134, no. 7, pp. 783—791.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wang, X., Wang, C., Guan, J., et al., Progress of breast cancer basic research in China, Int. J. Biol. Sci., 2021, vol. 17, no. 8, pp. 2069—2079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fumagalli, C., Ranghiero, A., Gandini, S., et al., Inter-tumor genomic heterogeneity of breast cancers: comprehensive genomic profile of primary early breast cancers and relapses, Breast Cancer Res., 2020, vol. 22, no. 1, р. 107. https://doi.org/10.1186/s13058-020-01345-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Anastasiadou, E., Jacob, L.S., and Slack, F.J., Non-coding RNA networks in cancer, Nat. Rev. Cancer, 2018, vol. 18, no. 1, pp. 5—18.

    Article  CAS  PubMed  Google Scholar 

  5. Piao, M. and Zhang, L., Knockdown of SNHG16 suppresses the proliferation and induces the apoptosis of leukemia cells via miR‑193a‑5p/CDK8, Int. J. Mol. Med., 2020, vol. 46, no. 3, pp. 1175—1185. https://doi.org/10.3892/ijmm.2020.4671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Paraskevopoulou, M.D. and Hatzigeorgiou, A.G., Analyzing miRNA-lncRNA interactions, Methods Molec. Biol. (Clifton, NJ), 2016, vol. 1402, pp. 271—286.

    CAS  Google Scholar 

  7. Rajagopal, T., Talluri, S., Akshaya, R.L., et al., HOTAIR lncRNA: a novel oncogenic propellant in human cancer, Clin. Chim. Acta, 2020, vol. 503, pp. 1—18.

  8. Thin, K.Z., Liu, X., Feng, X., et al., LncRNA-DANCR: a valuable cancer related long non-coding RNA for human cancers, Pathol., Res. Pract., 2018, vol. 214, no. 6, pp. 801—805.

    Article  CAS  PubMed  Google Scholar 

  9. Yang, Y., Gao, M., Li, Y., et al., LncRNA CTBP1-AS2 facilitates gastric cancer progression via regulating the miR-139-3p/MMP11 axis, OncoTargets Ther., 2020, vol. 13, pp. 11537—11547.

    Article  CAS  Google Scholar 

  10. Cui, K. and Zhu, G., LncRNA CTBP1-AS2 regulates miR-216a/ PTEN to suppress ovarian cancer cell proliferation, J. Ovarian Res., 2020, vol. 13, no. 1, p. 84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Soheilyfar, S., Velashjerdi, Z., Sayed Hajizadeh, Y., et al., In vivo and in vitro impact of miR-31 and miR-143 on the suppression of metastasis and invasion in breast cancer, J. BUON, 2018, vol. 23, no. 5, pp. 1290—1296.

    PubMed  Google Scholar 

  12. Kong, W., Yang, L., Li, P.P., et al., MiR-381-3p inhibits proliferation, migration and invasion by targeting LRP6 in papillary thyroid carcinoma, Eur. Rev. Med. Pharmacol. Sci., 2018, vol. 22, no. 12, pp. 3804—3811.

    CAS  PubMed  Google Scholar 

  13. Yang, X., Ruan, H., Hu, X., et al., miR-381-3p suppresses the proliferation of oral squamous cell carcinoma cells by directly targeting FGFR2, Am. J. Cancer Res., 2017, vol. 7, no. 4, pp. 913—922.

    PubMed  PubMed Central  Google Scholar 

  14. Zhang, M., Liu, Y., Teng, P., et al., Differential expression of miR-381-3p in Alzheimer’s disease patients and its role in beta-amyloid-induced neurotoxicity and inflammation, Neuroimmunomodulation, 2021, pp. 1—9.

  15. Rothschild, S.I., Tschan, M.P., Jaggi, R., et al., MicroRNA-381 represses ID1 and is deregulated in lung adenocarcinoma, J. Thorac. Oncol., 2012, vol. 7, no. 7, pp. 1069—1077. https://doi.org/10.1097/JTO.0b013e31824fe976

    Article  CAS  PubMed  Google Scholar 

  16. Shi, S.H., Jiang, J., Sun, L., et al., Dynamic regulative biomarker: long noncoding RNA (lncRNA) in metastatic breast cancer, Clin. Lab., 2020, vol. 66, no. 9, р. 191140.

    Article  Google Scholar 

  17. Zhang, W., Guan, X., and Tang, J., The long non-coding RNA landscape in triple-negative breast cancer, Cell Proliferation, 2021, vol. 54, no. 2, р. e12966.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, Q., Li, T., Wang, Z., et al., LncRNA NR2F1-AS1 promotes breast cancer angiogenesis through activating IGF-1/IGF-1R/ERK pathway, J. Cell. Mol. Med., 2020, vol. 24, no. 14, pp. 8236—8247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, M., Wang, N., Song, P., et al., LncRNA GATA3‑AS1 facilitates tumour progression and immune escape in triple-negative breast cancer through destabilization of GATA3 but stabilization of PD-L1, Cell Proliferation, 2020, vol. 53, no. 9, р. e12855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, Y., Zong, J., and Zhao, C., LncRNA CTBP1-AS2 promotes proliferation and migration of glioma by modulating miR-370-3p-Wnt7a-mediated epithelial-mesenchymal transition, Biochem. Cell Biol., 2020, vol. 98, no. 6, pp. 661—668.

    Article  CAS  PubMed  Google Scholar 

  21. Liu, L.X., Liu, B., Yu, J., et al., SP1-induced upregulation of lncRNA CTBP1-AS2 accelerates the hepatocellular carcinoma tumorigenesis through targeting CEP55 via sponging miR-195-5p, Biochem. Biophys. Res. Commun., 2020, vol. 533, no. 4, pp. 779—785.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, H., Li, J., Shao, W., et al., LncRNA CTBP1-AS2 is upregulated in osteoarthritis and increases the methylation of miR-130a gene to inhibit chondrocyte proliferation, Clin. Rheumatol., 2020, vol. 39, no. 11, pp. 3473—3478.

    Article  PubMed  Google Scholar 

  23. Wang, M. and Zhao, H., LncRNA CTBP1-AS2 promotes cell proliferation in hepatocellular carcinoma by regulating the miR-623/Cyclin D1 axis, Cancer Biother. Radiopharm., 2020, vol. 35, no. 10, pp. 765—770.

    CAS  PubMed  Google Scholar 

  24. Yang, S., Shi, F., Du, Y., et al., Long non-coding RNA CTBP1-AS2 enhances cervical cancer progression via up-regulation of ZNF217 through sponging miR-3163, Cancer Cell Int., 2020, vol. 20, p. 343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, G., Wu, B., Zhang, B., et al., LncRNA CTBP1-AS2 alleviates high glucose- induced oxidative stress, ECM accumulation, and inflammation in diabetic nephropathy via miR-155-5p/FOXO1 axis, Biochem. Biophys. Res. Commun., 2020, vol. 532, no. 2, pp. 308—314.

    Article  CAS  PubMed  Google Scholar 

  26. Wang, Y., Zhang, C.X., Ge, S.L., et al., CTBP1‑AS2 inhibits proliferation and induces autophagy in ox‑LDL‑stimulated vascular smooth muscle cells by regulating miR‑195‑5p/ATG14, Int. J. Mol. Med., 2020, vol. 46, no. 2, pp. 839—848.

    Article  PubMed  Google Scholar 

  27. Yu, Y.Z., Mu, Q., Ren, Q., et al., miR-381-3p suppresses breast cancer progression by inhibition of epithelial-mesenchymal transition, World J. Surg. Oncol., 2021, vol. 19, no. 1, р. 230.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dong, Z. and Zhang, J., miR-381-3p involves in glioma progression by suppressing tumor-promoter factor ANTXR1, Comput. Math. Methods Med., 2021, vol. 2021, р. 4883509.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Shang, A., Zhou, C., Bian, G., et al., miR-381-3p restrains cervical cancer progression by downregulating FGF7, Comput. Math. Methods Med., 2019, vol. 120, no. 1, pp. 778—789.

    CAS  Google Scholar 

  30. Yi, D., miR-381 overcomes cisplatin resistance in breast cancer by targeting MDR1, J. Cell. Biochem., 2019, vol. 43, no. 1, pp. 12—21.

    CAS  Google Scholar 

  31. Garcia-Escolano, M., Montoyo-Pujol, Y.G., Ortiz-Martinez, F., et al., ID1 and ID4 are biomarkers of tumor aggressiveness and poor outcome in immunophenotypes of breast cancer, Cancers (Basel), 2021, vol. 13, no. 3, р. 492. https://doi.org/10.3390/cancers13030492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gumireddy, K., Li, A., Kossenkov, A.V., et al., ID1 promotes breast cancer metastasis by S100A9 regulation, Mol. Cancer Res., 2014, vol. 12, no. 9, pp. 1334—1343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Health and Medical Science research topic of Hebei Province (Project no. 20220026).

Author information

Authors and Affiliations

Authors

Contributions

HFZ, BL and YHF made substantial contributions to conception and design, acquisition of data, analysis and interpretation of data. JWD and SYZ aided with the planning of the analysis and collected important background information. HFZ draft of the manuscript, YHF revised the manuscript critically for important intellectual content. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Y. H. Fan.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement of compliance with standards of research involving humans as subjects. This study was approved by the Ethical Committee of The First Affiliated Hospital of Hebei North University.

All subjects had written informed comments to participate in the study.

CONSENT TO PUBLISH

N/A.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H.F., Liu, B., Duan, J.W. et al. LncRNA CTBP1-AS2 Influences Cellular Activities via miR-381-3p/ID1 Axis in Breast Cancer. Russ J Genet 59 (Suppl 1), 90–98 (2023). https://doi.org/10.1134/S1022795423130148

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795423130148

Keywords:

Navigation