Skip to main content
Log in

Methodologies for Ancient DNA Extraction from Bones for Genomic Analysis: Approaches and Guidelines

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The emergence and development of massive parallel sequencing (new generation sequencing) methods have opened up new prospects in the study of ancient organisms, including extinct ones. Numerous skeletal remains from archaeological and museum collections are often the only source of information on ancient species and populations. In this review, we discuss the features of human bone tissue and the advantages and disadvantages of bone material as a source of DNA for genomic analysis of ancient people. Here we present new methodological approaches to DNA extraction from ancient human skeletal remains and its preparation for large-scale parallel sequencing are presented, as well as prospects and directions for further research in a new interdisciplinary field, paleogenomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Hagelberg, E., Sykes, B., and Hedges, R., Ancient bone DNA amplified, Nature, 1989, vol. 342, no. 6249, p. 485. https://doi.org/10.1038/342485a0

    Article  CAS  PubMed  Google Scholar 

  2. Lindahl, T., Instability and decay of the primary structure of DNA, Nature, 1993, vol. 362, no. 6422, pp. 709—715. https://doi.org/10.1038/362709a0

    Article  CAS  PubMed  Google Scholar 

  3. Pääbo, S. and Wilson, A.C., Miocene DNA sequences—a dream come true?, Curr. Biol., 1991, vol. 1, no. 1, pp. 45—46. https://doi.org/10.1016/0960-9822(91)90125-G

    Article  PubMed  Google Scholar 

  4. Allentoft, M.E., Collins, M., Harker, D., et al., The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils, Proc. R. Soc. London, Ser. B, 2012, vol. 279, no. 1748, pp. 4724—4733. https://doi.org/10.1098/rspb.2012.1745

  5. van der Valk, T., Pečnerová, P., Díez-del-Molino, D., et al., Million-year-old DNA sheds light on the genomic history of mammoths, Nature, 2021, vol. 591, no. 7849, pp. 265—269. https://doi.org/10.1038/s41586-021-03224-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Van der Plicht, J., Bronk Ramsey, C., Heaton, T.J., et al., Recent developments in calibration for archaeological and environmental samples, Radiocarbon, 2020, vol. 62, no. 4, pp. 1095—1117. https://doi.org/10.1017/RDC.2020.22

    Article  CAS  Google Scholar 

  7. Horai, S., Hayasaka, K., Murayama, K., et al., DNA amplification from ancient human skeletal remains and their sequence analysis, Proc. Jpn. Acad., Ser. B Phys. Biol. Sci., 1989, vol. 65, no. 10, pp. 229—233. https://doi.org/10.2183/pjab.65.229

    Article  CAS  Google Scholar 

  8. Briggs, A.W., Stenzel, U., Johnson, P.L.F., et al., Patterns of damage in genomic DNA sequences from a Neandertal, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 37, pp. 14616—14621. https://doi.org/10.1073/pnas.0704665104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Frederico, L.A., Shaw, B.R., and Kunkel, T.A., A sensitive genetic assay for the detection of cytosine deamination: determination of rate constants and the activation energy, Biochemistry, 1990, vol. 29, no. 10, pp. 2532—2537. https://doi.org/10.1021/bi00462a015

    Article  CAS  PubMed  Google Scholar 

  10. Dabney, J., Meyer, M., and Pääbo, S., Ancient DNA damage, Cold Spring Harb. Perspect. Biol., 2013, vol. 5, no. 7. https://doi.org/10.1101/cshperspect.a012567

  11. Heyn, P., Stenzel, U., Briggs, A.W., et al., Road blocks on paleogenomes-polymerase extension profiling reveals the frequency of blocking lesions in ancient DNA, Nucleic Acids Res., 2010, vol. 38, no. 16. https://doi.org/10.1093/nar/gkq572

  12. Trueman, C.N. and Martill, D.M., The long-term survival of bone: the role of bioerosion, Archaeometry, 2002, vol. 44, no. 3, pp. 371—382. https://doi.org/10.1111/1475-4754.t01-1-00070

    Article  CAS  Google Scholar 

  13. Bell, L.S., Skinner, M.F., and Jones, S.J., The speed of post mortem change to the human skeleton and its taphonomic significance, Forensic Sci. Int., 1996, vol. 82, no. 2, pp. 129—140. https://doi.org/10.1016/0379-0738(96)01984-6

    Article  CAS  PubMed  Google Scholar 

  14. Turner-Walker, G., Nielsen-Marsh, C.M., Syversen, U., et al., Sub-micron spongiform porosity is the major ultra-structural alteration occurring in archaeological bone, Int. J. Osteoarchaeol., 2002, vol. 12, no. 6, pp. 407—414. https://doi.org/10.1002/oa.642

    Article  Google Scholar 

  15. Romanowski, G., Lorenz, M.G., and Wackernagel, W., Adsorption of plasmid DNA to mineral surfaces and protection against DNase I, Appl. Environ. Microbiol., 1991, vol. 57, no. 4, pp. 1057—1061. https://doi.org/10.1128/aem.57.4.1057-1061.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Demanèche, S., Jocteur-Monrozier, L., Quiquampoix, H., and Simonet, P., Evaluation of biological and physical protection against nuclease degradation of clay-bound plasmid DNA, Appl. Environ. Microbiol., 2001, vol. 67, no. 1, pp. 293—299. https://doi.org/10.1128/AEM.67.1.293-299.2001

    Article  PubMed  PubMed Central  Google Scholar 

  17. Brundin, M., Figdor, D., Sundqvist, G., and Sjögren, U., DNA binding to hydroxyapatite: a potential mechanism for preservation of microbial DNA, J. Endod., 2013, vol. 39, no. 2, pp. 211—216. https://doi.org/10.1016/j.joen.2012.09.013

    Article  PubMed  Google Scholar 

  18. Sosa, C., Vispe, E., Núñez, C., et al., Association between ancient bone preservation and DNA yield: a multidisciplinary approach, Am. J. Phys. Anthropol., 2013, vol. 151, no. 1, pp. 102—109. https://doi.org/10.1002/ajpa.22262

    Article  CAS  PubMed  Google Scholar 

  19. Rogaev, E.I., Moliaka, Y.K., Malyarchuk, B.A., et al., Complete mitochondrial genome and phylogeny of pleistocene mammoth Mammuthus primigenius, PLoS Biol., 2006, vol. 4, no. 3, pp. 0403—0410. https://doi.org/10.1371/journal.pbio.0040073

  20. Götherström, A., Collins, M.J., Angerbjörn, A., and Lidén, K., Bone preservation and DNA amplification, Archaeometry, 2002, vol. 44, no. 3, pp. 395—404. https://doi.org/10.1111/1475-4754.00072

    Article  Google Scholar 

  21. Schwarz, C., Debruyne, R., Kuch, M., et al., New insights from old bones: DNA preservation and degradation in permafrost preserved mammoth remains, Nucleic Acids Res., 2009, vol. 37, no. 10, pp. 3215—3229. https://doi.org/10.1093/nar/gkp159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Poinar, H.N. and Stankiewicz, B.A., Protein preservation and DNA retrieval from ancient tissues, Proc. Natl. Acad. Sci. U.S.A., 1999, vol. 96, no. 15, pp. 8426—8431. https://doi.org/10.1073/pnas.96.15.8426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Colson, I.B., Bailey, J.F., Vercauteren, M., et al., The preservation of ancient DNA and bone diagenesis, Anc. Biomol., 1997, vol. 1, no. 2, pp. 109–117.

    CAS  Google Scholar 

  24. Smith, C.I., Chamberlain, A.T., Riley, M.S., et al., The thermal history of human fossils and the likelihood of successful DNA amplification, J. Hum. Evol., 2003, vol. 45, no. 3, pp. 203—217. https://doi.org/10.1016/S0047-2484(03)00106-4

    Article  PubMed  Google Scholar 

  25. Pääbo, S., Molecular cloning of ancient Egyptian mummy DNA, Nature, 1985, vol. 314, no. 6012, pp. 644—645. https://doi.org/10.1038/314644a0

    Article  PubMed  Google Scholar 

  26. Schuenemann, V.J., Peltzer, A., Welte, B., et al., Ancient Egyptian mummy genomes suggest an increase of Sub-Saharan African ancestry in post-Roman periods, Nat. Commun., 2017, vol. 8. https://doi.org/10.1038/ncomms15694

  27. Gad, Y.Z., Abu-Mandil Hassan, N., Mousa, D.M., et al., Insights from ancient DNA analysis of Egyptian human mummies: clues to disease and kinship, Hum. Mol. Genet., 2021, vol. 30, no. 2, pp. R24—R28. https://doi.org/10.1093/hmg/ddaa223

    Article  CAS  PubMed  Google Scholar 

  28. Rogaev, E.I., Grigorenko, A.P., Moliaka, Y.K., et al., Genomic identification in the historical case of the Nicholas II royal family, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, no. 13, pp. 5258—5263. https://doi.org/10.1073/pnas.0811190106

    Article  PubMed  PubMed Central  Google Scholar 

  29. Grela, M., Jakubczak, A., Kowalczyk, M., et al., Effectiveness of various methods of DNA isolation from bones and teeth of animals exposed to high temperature, J. Forensic Leg. Med., 2021, vol. 78. https://doi.org/10.1016/j.jflm.2021.102131

  30. Emery, M.V., Bolhofner, K., Winingear, S., et al., Reconstructing full and partial STR profiles from severely burned human remains using comparative ancient and forensic DNA extraction techniques, Forensic Sci. Int. Genet., 2020, vol. 46. https://doi.org/10.1016/j.fsigen.2020.102272

  31. Ottoni, C., Koon, H.E.C., Collins, M.J., et al., Preservation of ancient DNA in thermally damaged archaeological bone, Naturwissenschaften, 2009, vol. 96, no. 2, pp. 267—278. https://doi.org/10.1007/s00114-008-0478-5

    Article  CAS  PubMed  Google Scholar 

  32. Latham, K.E. and Miller, J.J., DNA recovery and analysis from skeletal material in modern forensic contexts, Forensic Sci. Res., 2019, vol. 4, no. 1, pp. 51—59. https://doi.org/10.1080/20961790.2018.1515594

    Article  PubMed  Google Scholar 

  33. Prado, M., Franco, C.M., Fente, C.A., et al., Comparison of extraction methods for the recovery, amplification and species-specific analysis of DNA from bone and bone meals, Electrophoresis, 2002, vol. 23, nos. 7—8, pp. 1005—1012. https://doi.org/10.1002/1522-2683(200204)23:7/8<1005::AID-ELPS1005>3.0.CO;2-1

    Article  CAS  PubMed  Google Scholar 

  34. Pruvost, M., Schwarz, R., Correia, V.B., et al., Freshly excavated fossil bones are best for amplification of ancient DNA, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 3, pp. 739—744. https://doi.org/10.1073/pnas.0610257104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bowes, J.H. and Murray, M.M., The chemical composition of teeth, Biochem. J., 1935, vol. 29, no. 12, pp. 2721—2727. https://doi.org/10.1042/bj0292721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Beniash, E., Stifler, C.A., Sun, C.Y., et al., The hidden structure of human enamel, Nat. Commun., 2019, vol. 10, no. 1. https://doi.org/10.1038/s41467-019-12185-7

  37. Malaver, P.C. and Yunis, J.J., Different dental tissues as source of DNA for human identification in forensic cases, Croat. Med. J., 2003, vol. 44, no. 3, pp. 306—309.

    PubMed  Google Scholar 

  38. Trivedi, R., Chattopadhyay, P., and Kashyap, V.K., A new improved method for extraction of DNA from teeth for the analysis of hypervariable loci, Am. J. Forensic Med. Pathol., 2002, vol. 23, no. 2, pp. 191—196. https://doi.org/10.1097/00000433-200206000-00016

    Article  CAS  PubMed  Google Scholar 

  39. Pötsch, L., Meyer, U., Rothschild, S., et al., Application of DNA techniques for identification using human dental pulp as a source of DNA, Int. J. Legal Med., 1992, vol. 105, no. 3, pp. 139—143. https://doi.org/10.1007/BF01625165

    Article  PubMed  Google Scholar 

  40. Schuenemann, V.J., Singh, P., Mendum, T.A., et al., Genome-wide comparison of medieval and modern Mycobacterium leprae, Science, 2013, vol. 341, no. 6142, pp. 179—183. https://doi.org/10.1126/SCIENCE.1238286

    Article  CAS  PubMed  Google Scholar 

  41. Higgins, D. and Austin, J.J., Teeth as a source of DNA for forensic identification of human remains: a review, Sci. Justice, 2013, vol. 53, no. 4, pp. 433—441. https://doi.org/10.1016/j.scijus.2013.06.001

    Article  CAS  PubMed  Google Scholar 

  42. Dabney, J. and Meyer, M., Extraction of highly degraded DNA from ancient bones and teeth, Methods Mol. Biol., 2019, vol. 1963, pp. 25—29. https://doi.org/10.1007/978-1-4939-9176-1_4

    Article  CAS  PubMed  Google Scholar 

  43. Adler, C.J., Haak, W., Donlon, D., and Cooper, A., Survival and recovery of DNA from ancient teeth and bones, J. Archaeol. Sci., 2011, vol. 38, no. 5, pp. 956—964. https://doi.org/10.1016/j.jas.2010.11.010

    Article  Google Scholar 

  44. Campos, P.F., Craig, O.E., Turner-Walker, G., et al., DNA in ancient bone—where is it located and how should we extract it?, Ann. Anat., 2012, vol. 194, no. 1, pp. 7—16. https://doi.org/10.1016/j.aanat.2011.07.003

    Article  CAS  PubMed  Google Scholar 

  45. Andreeva, T.V., Malyarchuk, A.B., Grigorenko, A.P., et al., Archaeogenetic analysis of an individual from a burial site at the ancient Yaroslavl Kremlin, Kratk. Soobshch. Inst. Arkheol., 2021, vol. 265, pp. 209—308.

    Google Scholar 

  46. Sawyer, S., Renaud, G., Viola, B., et al., Nuclear and mitochondrial DNA sequences from two Denisovan individuals, Proc. Natl. Acad. Sci. U.S.A., 2015, vol. 112, no. 51, pp. 15696—15700. https://doi.org/10.1073/pnas.1519905112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Adler, C.J., Haak, W., Donlon, D., and Cooper, A., Survival and recovery of DNA from ancient teeth and bones, J. Archaeol. Sci., 2011, vol. 38, no. 5, pp. 956—964. https://doi.org/10.1016/j.jas.2010.11.010

    Article  Google Scholar 

  48. Damgaard, P.B., Margaryan, A., Schroeder, H., et al., Improving access to endogenous DNA in ancient bones and teeth, Sci. Rep., 2015, vol. 5, no. 1, p. 11184. https://doi.org/10.1038/srep11184

    Article  PubMed  PubMed Central  Google Scholar 

  49. Freeman, E., Periodontium, in Oral Histology: Development, Structure, and Function, Ten Cate, A.R., Ed., St. Louis: Mosby, 1994, pp. 276—312.

  50. Lam, Y.M., Chen, X., and Pearson, O.M., Intertaxonomic variability in patterns of bone density and the differential representation of bovid, cervid, and equid elements in the archaeological record, Am. Antiq., 1999, vol. 64, no. 2, pp. 343—362. https://doi.org/10.2307/2694283

    Article  Google Scholar 

  51. Hansen, H.B., Damgaard, P.B., Margaryan, A., et al., Comparing ancient DNA preservation in petrous bone and tooth cementum, PLoS One, 2017, vol. 12, no. 1. https://doi.org/10.1371/journal.pone.0170940

  52. Pinhasi, R., Fernandes, D., Sirak, K., et al., Optimal ancient DNA yields from the inner ear part of the human petrous bone, PLoS One, 2015, vol. 10, no. 6. https://doi.org/10.1371/journal.pone.0129102

  53. Pinhasi, R., Fernandes, D.M., Sirak, K., and Cheronet, O., Isolating the human cochlea to generate bone powder for ancient DNA analysis, Nat. Protoc., 2019, vol. 14, no. 4, pp. 1194—1205. https://doi.org/10.1038/s41596-019-0137-7

    Article  CAS  PubMed  Google Scholar 

  54. Sirak, K., Fernandes, D., Cheronet, O., et al., Human auditory ossicles as an alternative optimal source of ancient DNA, Genome Res., 2020, vol. 30, no. 3, pp. 427—436. https://doi.org/10.1101/gr.260141.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ponce de León, M.S., Koesbardiati, T., Weissmann, J.D., et al., Human bony labyrinth is an indicator of population history and dispersal from Africa, Proc. Natl. Acad. Sci. U.S.A., 2018, vol. 115, no. 16, pp. 4128—4133. https://doi.org/10.1073/pnas.1717873115

    Article  PubMed  PubMed Central  Google Scholar 

  56. Parker, C., Rohrlach, A.B., Friederich, S., et al., A systematic investigation of human DNA preservation in medieval skeletons, Sci. Rep., 2020, vol. 10, no. 1. https://doi.org/10.1038/s41598-020-75163-w

  57. Krings, M., Stone, A., Schmitz, R.W., et al., Neandertal DNA sequences and the origin of modern humans, Cell, 1997, vol. 90, no. 1, pp. 19—30. https://doi.org/10.1016/S0092-8674(00)80310-4

    Article  CAS  PubMed  Google Scholar 

  58. Lalueza, C., Pérez-Pérez, A., Prats, E., et al., Lack of founding Amerindian mitochondrial DNA lineages in extinct aborigines from Tierra del Fuego-Patagonia, Hum. Mol. Genet., 1997, vol. 6, no. 1, pp. 41—46. https://doi.org/10.1093/hmg/6.1.41

    Article  CAS  PubMed  Google Scholar 

  59. Prestuplenie veka: materialy sledstviya. Dokumental’no-arkhivnaya khronologiya sobytii, svyazannykh s gibel’yu Rossiiskogo imperatora Nikolaya II, ego sem’i i ikh priblizhennykh v 3 tomahk (Crime of the Century: Materials of the Investigation. Documentary and Archival Chronology of Events Related to the Perishing of the Russian Emperor Nicholas II, His Family and Their Entourage: in 3 Volumes), Moscow: Sledstvennyi Komitet RF, 2021, vol. 2.

  60. Margaryan, A., Hansen, H.B., Rasmussen, S., et al., Ancient pathogen DNA in human teeth and petrous bones, Ecol. Evol., 2018, vol. 8, no. 6, pp. 3534—3542. https://doi.org/10.1002/ece3.3924

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hajdinjak, M., Fu, Q., Hübner, A., et al., Reconstructing the genetic history of late Neanderthals, Nature, 2018, vol. 555, no. 7698, pp. 652—656. https://doi.org/10.1038/nature26151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Grigorenko, A.P., Borinskaya, S.A., Yankovsky, N.K., and Rogaev, E.I., Achievements and peculiarities in studies of ancient DNA and DNA from complicated forensic specimens, Acta Nat., 2009, vol. 1, no. 3, pp. 58—69.

    Article  CAS  Google Scholar 

  63. Pálsdóttir, A.H., Bläuer, A., Rannamäe, E., et al., Not a limitless resource: ethics and guidelines for destructive sampling of archaeofaunal remains, R. Soc. Open Sci., 2019, vol. 6, no. 10. https://doi.org/10.1098/rsos.191059

  64. Kemp, B.M., Winters, M., Monroe, C., and Barta, J.L., How much DNA is lost? Measuring DNA loss of short-tandem-repeat length fragments targeted by the PowerPlex 16® system using the Qiagen MinElute Purification Kit, Hum. Biol., 2014, vol. 86, no. 4, pp. 313—329. https://doi.org/10.13110/humanbiology.86.4.0313

    Article  PubMed  Google Scholar 

  65. Montiel, R., Malgosa, A., and Francalacci, P., Authenticating ancient human mitochondrial DNA, Hum. Biol., 2001, vol. 73, no. 5, pp. 689—713. https://doi.org/10.1353/hub.2001.0069

    Article  CAS  PubMed  Google Scholar 

  66. Ginther, C., Issel-Tarver, L., and King, M.C., Identifying individuals by sequencing mitochondrial DNA from teeth, Nat. Genet., 1992, vol. 2, no. 2, pp. 135—138. https://doi.org/10.1038/ng1092-135

    Article  CAS  PubMed  Google Scholar 

  67. Champlot, S., Berthelot, C., Pruvost, M., et al., An efficient multistrategy DNA decontamination procedure of PCR reagents for hypersensitive PCR applications, PLoS One, 2010, vol. 5, no. 9. https://doi.org/10.1371/journal.pone.0013042

  68. Morales Colón, E., Hernández, M., Candelario, M., et al., Evaluation of a freezer mill for bone pulverization prior to DNA extraction: an improved workflow for STR analysis, J. Forensic Sci., 2018, vol. 63, no. 2, pp. 530—535. https://doi.org/10.1111/1556-4029.13551

    Article  CAS  PubMed  Google Scholar 

  69. Stone, A.C., Milner, G.R., Paäbo, S., and Stoneking, M., Sex determination of ancient human skeletons using DNA, Am. J. Phys. Anthropol., 1996, vol. 99, no. 2, pp. 231—238. https://doi.org/10.1002/(SICI)1096-8644(199602)9-9:2<231::AID-AJPA1>3.0.CO;2-1

    Article  CAS  PubMed  Google Scholar 

  70. Rohland, N., Siedel, H., and Hofreiter, M., Nondestructive DNA extraction method for mitochondrial DNA analyses of museum specimens, Biotechniques, 2004, vol. 36, no. 5, pp. 814—821. https://doi.org/10.2144/04365st05

    Article  CAS  PubMed  Google Scholar 

  71. Bolnick, D.A., Bonine, H.M., Mata-Míguez, J., et al., Nondestructive sampling of human skeletal remains yields ancient nuclear and mitochondrial DNA, Am. J. Phys. Anthropol., 2012, vol. 147, no. 2, pp. 293—300. https://doi.org/10.1002/ajpa.21647

    Article  PubMed  Google Scholar 

  72. Harney, É., Cheronet, O., Fernandes, D.M., et al., A minimally destructive protocol for DNA extraction from ancient teeth, Genome Res., 2021, vol. 31, no. 3, pp. 472—483. https://doi.org/10.1101/GR.267534.120

    Article  PubMed  PubMed Central  Google Scholar 

  73. Loreille, O.M., Diegoli, T.M., Irwin, J.A., et al., High efficiency DNA extraction from bone by total demineralization, Forensic Sci. Int. Genet., 2007, vol. 1, no. 2, pp. 191—195. https://doi.org/10.1016/j.fsigen.2007.02.006

    Article  PubMed  Google Scholar 

  74. Yang, D.Y., Eng, B., Waye, J.S., et al., Technical note: improved DNA extraction from ancient bones using silica-based spin columns, Am. J. Phys. Anthropol., 1998, vol. 105, no. 4, pp. 539—543. https://doi.org/10.1002/(SICI)1096-8644(199804)1-05:4<539::AID-AJPA10>3.0.CO;2-1

    Article  CAS  PubMed  Google Scholar 

  75. Höss, M. and Pääbo, S., DNA extraction from pleistocene bones by a silica-based purification method, Nucleic Acids Res., 1993, vol. 21, no. 16, pp. 3913—3914. https://doi.org/10.1093/nar/21.16.3913

    Article  PubMed  PubMed Central  Google Scholar 

  76. Voong, C.P., Spencer, P.S., Navarrete, C.V., et al., HLA-DR genotyping and mitochondrial DNA analysis reveal the presence of family burials in a fourth century Romano-British Christian cemetery, Front. Genet., 2017, vol. 8, p. 182. https://doi.org/10.3389/fgene.2017.00182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kalmár, T., Bachrati, C.Z., Marcsik, A., and Raskó, I., A simple and efficient method for PCR amplifiable DNA extraction from ancient bones, Nucleic Acids Res., 2000, vol. 28, no. 12, p. 67. https://doi.org/10.1093/nar/28.12.e67

    Article  Google Scholar 

  78. Hofreiter, M., Rabeder, G., Jaenicke-Després, V., et al., Evidence for reproductive isolation between Cave Bear populations, Curr. Biol., 2004, vol. 14, no. 1, pp. 40—43. https://doi.org/10.1016/j.cub.2003.12.035

    Article  CAS  PubMed  Google Scholar 

  79. Leonard, J.A., Wayne, R.K., and Cooper, A., Population genetics of Ice Age brown bears, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, no. 4, pp. 1651—1654. https://doi.org/10.1073/pnas.040453097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Scheible, M., Loreille, O., Just, R., and Irwin, J., Short tandem repeat typing on the 454 platform: strategies and considerations for targeted sequencing of common forensic markers, Forensic Sci. Int. Genet., 2014, vol. 12, pp. 107—119. https://doi.org/10.1016/j.fsigen.2014.04.010

    Article  CAS  PubMed  Google Scholar 

  81. Boom, R., Sol, C.J.A., Salimans, M.M.M., et al., Rapid and simple method for purification of nucleic acids, J. Clin. Microbiol., 1990, vol. 28, no. 3, pp. 495–503. https://doi.org/10.1128/jcm.28.3.495-503.1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gamba, C., Hanghøj, K., Gaunitz, C., et al., Comparing the performance of three ancient DNA extraction methods for high-throughput sequencing, Mol. Ecol. Resour., 2016, vol. 16, no. 2, pp. 459—469. https://doi.org/10.1111/1755-0998.12470

    Article  CAS  PubMed  Google Scholar 

  83. Vigilant, L., Hofreiter, M., Siedel, H., and Boesch, C., Paternity and relatedness in wild chimpanzee communities, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, no. 23, pp. 12890—12895. https://doi.org/10.1073/pnas.231320498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hänni, C., Brousseau, T., Laudet, V., and Stehelin, D., Isopropanol precipitation removes PCR inhibitors from ancient bone extracts, Nucleic Acids Res., 1995, vol. 23, no. 5, pp. 881—882. https://doi.org/10.1093/nar/23.5.881

    Article  PubMed  PubMed Central  Google Scholar 

  85. Richards, M.B., Sykes, B.C., and Hedges, R.E.M., Authenticating DNA extracted from ancient skeletal remains, J. Archaeol. Sci., 1995, vol. 22, no. 2, pp. 291—299. https://doi.org/10.1006/jasc.1995.0031

    Article  Google Scholar 

  86. Keyser-Tracqui, C., Crubézy, E., and Ludes, B., Nuclear and mitochondrial DNA analysis of a 2000-year-old necropolis in the Egyin Gol valley of Mongolia, Am. J. Hum. Genet., 2003, vol. 73, no. 2, pp. 247—260. https://doi.org/10.1086/377005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lalueza-Fox, C., Calderón, F.L., Calafell, F., et al., MtDNA from extinct Tainos and the peopling of the Caribbean, Ann. Hum. Genet., 2001, vol. 65, no. 2, pp. 137—151. https://doi.org/10.1046/j.1469-1809.2001.6520137.x

    Article  CAS  PubMed  Google Scholar 

  88. Palmirotta, R., Verginelli, F., Di Tota, G., et al., Use of a multiplex polymerase chain reaction assay in the sex typing of DNA extracted from archaeological bone, Int. J. Osteoarchaeol., 1997, vol. 7, no. 6, pp. 605—609. https://doi.org/10.1002/(sici)1099-1212(199711/12)-7:6<605::aid-oa365>3.0.co;2-r

    Article  Google Scholar 

  89. Korlević, P. and Meyer, M., Pretreatment: removing DNA contamination from ancient bones and teeth using sodium hypochlorite and phosphate, Methods Mol. Biol., 2019, vol. 1963, pp. 15—19. https://doi.org/10.1007/978-1-4939-9176-1_2

    Article  CAS  PubMed  Google Scholar 

  90. Korlević, P., Gerber, T., and Gansauge, M.-T. et al. Reducing microbial and human contamination in DNA extractions from ancient bones and teeth, Biotechniques, 2015, vol. 59, no. 2, pp. 87—93. https://doi.org/10.2144/000114320

    Article  CAS  PubMed  Google Scholar 

  91. Weiner, S. and Price, P.A., Disaggregation of bone into crystals, Calcif. Tissue Int., 1986, vol. 39, no. 6, pp. 365—375. https://doi.org/10.1007/BF02555173

    Article  CAS  PubMed  Google Scholar 

  92. Salamon, M., Tuross, N., Arensburg, B., and Weiner, S., Relatively well preserved DNA is present in the crystal aggregates of fossil bones, Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, no. 39, pp. 13783—13788. https://doi.org/10.1073/pnas.0503718102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hayatsu, H., Pan, S., and Ukita, T., Reaction of sodium hypochlorite with nucleic acids and their constituents, Chem. Pharm. Bull., 1971, vol. 19, no. 10, pp. 2189—2192. https://doi.org/10.1248/cpb.19.2189

    Article  CAS  Google Scholar 

  94. Prince, A.M. and Andrus, L., PCR: how to kill unwanted DNA, Biotechniques, 1992, vol. 12, no. 3.

  95. Rohland, N., Glocke, I., Aximu-Petri, A., and Meyer, M., Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing, Nat. Protoc., 2018, vol. 13, no. 11, pp. 2447—2461. https://doi.org/10.1038/s41596-018-0050-5

    Article  CAS  PubMed  Google Scholar 

  96. Ginolhac, A., Vilstrup, J., Stenderup, J., et al., Improving the performance of true single molecule sequencing for ancient DNA, BMC Genomics, 2012, vol. 13, no. 1. https://doi.org/10.1186/1471-2164-13-177

  97. Orlando, L., Ginolhac, A., Raghavan, M., et al., True single-molecule DNA sequencing of a Pleistocene horse bone, Genome Res., 2011, vol. 21, no. 10, pp. 1705—1719. https://doi.org/10.1101/gr.122747.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Meyer, M., Fu, Q., Aximu-Petri, A., et al., A mitochondrial genome sequence of a hominin from Sima de los Huesos, Nature, 2014, vol. 505, no. 7483, pp. 403—406. https://doi.org/10.1038/nature12788

    Article  CAS  PubMed  Google Scholar 

  99. de Sousa, S.M.G. and Silva, T.L., Efeito do EDTA, EGTA, CDTA e ácido cítrico na desmineralização da dentina radicular: estudo comparativo, Braz. Oral Res., 2005, vol. 19, no. 3, pp. 188—192. https://doi.org/10.1590/S1806-83242005000300006

    Article  Google Scholar 

  100. Medina Cardenas, M.E., Calvo Pérez, V., and Sánchez Planells, U., Comparison of the chelating capacity of EDTA and EGTA, a new demineralized agent, on molars in vitro, Rev. Dent. Chile, 1989, vol. 80, no. 1, pp. 4—10.

    CAS  PubMed  Google Scholar 

  101. Tripodi, D., D’Ercole, S., De Fazio, P., and Spoto, G., Demineralizing action of EGTA in endodontics, Int. J. Immunopathol. Pharmacol., 2007, vol. 20, no. 1, suppl. 1, pp. 93—96. https://doi.org/10.1177/039463200702001s18

    Article  CAS  PubMed  Google Scholar 

  102. Simpson, T.A. and Smith, R.J.H., Amplification of mitochondrial DNA from archival temporal bone specimens, Laryngoscope, 1995, vol. 105, no. 1, pp. 28—34. https://doi.org/10.1288/00005537-199501000-00009

    Article  CAS  PubMed  Google Scholar 

  103. Hagelberg, E. and Clegg, J.B., Isolation and characterization of DNA from archaeological bone, Proc. R. Soc. London, Ser. B, 1991, vol. 244, no. 1309, pp. 45—50. https://doi.org/10.1098/rspb.1991.0049

    Article  CAS  Google Scholar 

  104. Higgins, D., Kaidonis, J., Townsend, G., and Austin, J.J., Evaluation of carrier RNA and low volume demineralization for recovery of nuclear DNA from human teeth, Forensic Sci. Med. Pathol., 2014, vol. 10, no. 1, pp. 56—61. https://doi.org/10.1007/s12024-013-9519-2

    Article  CAS  PubMed  Google Scholar 

  105. Aksyuchits, V., Pokayanie: materialy Pravitel’stvennoi komissii po izucheniyu voprosov, svyazannykh s issledovaniem i perezakhoroneniem ostankov Rossiiskogo Imperatora Nikolaya II i chlenov ego sem’i (Repentance: Materials of the Russian Governmental Commission Responsible for the Study and Reburial of the Remains of the Russian Emperor Nicholas II and of Members of His Family), Moscow: Vybor, 1998.

  106. Katevatis, C., Fan, A., and Klapperich, C.M., Low concentration DNA extraction and recovery using a silica solid phase, PLoS One, 2017, vol. 12, no. 5. https://doi.org/10.1371/journal.pone.0176848

  107. Bouwman, A.S. and Brown, T.A., Comparison between silica-based methods for the extraction of DNA from human bones from 18th to mid-19th century London, Anc. Biomol., 2002, vol. 4, no. 4, pp. 173—178. https://doi.org/10.1080/1358612021000028470

    Article  CAS  Google Scholar 

  108. Rohland, N., Siedel, H., and Hofreiter, M., A rapid column-based ancient DNA extraction method for increased sample throughput, Mol. Ecol. Resour., 2010, vol. 10, no. 4, pp. 677–683. https://doi.org/10.1111/j.1755-0998.2009.02824.x

    Article  CAS  PubMed  Google Scholar 

  109. Dabney, J., Knapp, M., Glocke, I., et al., Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, no. 39, pp. 15758—15763. https://doi.org/10.1073/pnas.1314445110

    Article  PubMed  PubMed Central  Google Scholar 

  110. Amory, S., Huel, R., Bilić, A., et al., Automatable full demineralization DNA extraction procedure from degraded skeletal remains, Forensic Sci. Int. Genet., 2012, vol. 6, no. 3, pp. 398—406. https://doi.org/10.1016/j.fsigen.2011.08.004

    Article  CAS  PubMed  Google Scholar 

  111. Marshall, P.L., Stoljarova, M., Schmedes, S.E., et al., A high volume extraction and purification method for recovering DNA from human bone, Forensic Sci. Int. Genet., 2014, vol. 12, pp. 155—160. https://doi.org/10.1016/j.fsigen.2014.06.011

    Article  CAS  PubMed  Google Scholar 

  112. Jakubowska, J., Maciejewska, A., and Pawłowski, R, Comparison of three methods of DNA extraction from human bones with different degrees of degradation, Int. J. Legal Med., 2012, vol. 126, no. 1, pp. 173—178. https://doi.org/10.1007/s00414-011-0590-5

    Article  PubMed  Google Scholar 

  113. Hasap, L., Chotigeat, W., Pradutkanchana, J., et al., A novel, 4-h DNA extraction method for STR typing of casework bone samples, Int. J. Legal Med., 2020. https://doi.org/10.1007/s00414-019-02232-9

  114. Duijs, F.E. and Sijen, T., A rapid and efficient method for DNA extraction from bone powder, Forensic Sci. Int. Genet. Rep., 2020, vol. 2, p. 100099. https://doi.org/10.1016/j.fsir.2020.100099

    Article  Google Scholar 

  115. Gansauge, M.T. and Meyer, M., Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA, Nat. Protoc., 2013, vol. 8, no. 4, pp. 737—748. https://doi.org/10.1038/nprot.2013.038

    Article  CAS  PubMed  Google Scholar 

  116. Jónsson, H., Ginolhac, A., Schubert, M., et al., mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters, Bioinformatics, 2013, vol. 29, no. 13, pp. 1682—1684. https://doi.org/10.1093/bioinformatics/btt193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zavala, E.I., Jacobs, Z., Vernot, B., et al., Pleistocene sediment DNA reveals hominin and faunal turnovers at Denisova Cave, Nature, 2021. https://doi.org/10.1038/s41586-021-03675-0

  118. Vernot, B., Zavala, E.I., Gómez-Olivencia, A., et al., Unearthing Neanderthal population history using nuclear and mitochondrial DNA from cave sediments, Science, 2021, vol. 372, no. 6542. https://doi.org/10.1126/science.abf1667

  119. Bokelmann, L., Hajdinjak, M., Peyrégne, S., et al., A genetic analysis of the Gibraltar Neanderthals, Proc. Natl. Acad. Sci. U.S.A., 2019, vol. 116, no. 31, pp. 15610—15615. https://doi.org/10.1073/pnas.1903984116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Axelsson, E., Willerslev, E., Gilbert, M.T.P., and Nielsen, R., The effect of ancient DNA damage on inferences of demographic histories, Mol. Biol. Evol., 2008, vol. 25, no. 10, pp. 2181—2187. https://doi.org/10.1093/molbev/msn163

    Article  CAS  PubMed  Google Scholar 

  121. Briggs, A.W., Stenzel, U., Meyer, M., et al., Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA, Nucleic Acids Res., 2009, vol. 38, no. 6. https://doi.org/10.1093/nar/gkp1163

  122. Rohland, N., Harney, E., Mallick, S., et al., Partial uracil-DNA-glycosylase treatment for screening of ancient DNA, Philos. Trans. R. Soc., B, 2015, vol. 370, no. 1660. https://doi.org/10.1098/rstb.2013.0624

  123. Gorden, E.M., Sturk-Andreaggi, K., and Marshall, C., Repair of DNA damage caused by cytosine deamination in mitochondrial DNA of forensic case samples, Forensic Sci. Int. Genet., 2018, vol. 34, pp. 257—264. https://doi.org/10.1016/j.fsigen.2018.02.015

    Article  CAS  PubMed  Google Scholar 

  124. Segawa, T., Yonezawa, T., Mori, H., et al., Ancient DNA reveals multiple origins and migration waves of extinct Japanese brown bear lineages, R. Soc. Open Sci., 2021, vol. 8, no. 8. https://doi.org/10.1098/rsos.210518

  125. Mouttham, N., Klunk, J., Kuch, M., et al., Surveying the repair of ancient DNA from bones via high-throughput sequencing, Biotechniques, 2015, vol. 59, no. 1, pp. 19—25. https://doi.org/10.2144/000114307

    Article  CAS  PubMed  Google Scholar 

  126. Andreeva, T., Manakhov, A., Kunizheva, S., and Rogaev, E.I., Genetic evidence of authenticity of a hair shaft relic from the portrait of Tsesarevich Alexei, the son of the last Russian Emperor, Biochemistry (Moscow), 2021, vol. 86, no. 12, pp. 1572—1578.

    CAS  PubMed  Google Scholar 

  127. Orlando, L., Gilbert, M.T.P., and Willerslev, E., Reconstructing ancient genomes and epigenomes, Nat. Rev. Genet., 2015, vol. 16, no. 7, pp. 395—408. https://doi.org/10.1038/nrg3935

    Article  CAS  PubMed  Google Scholar 

  128. Gansauge, M.-T., Gerber, T., Glocke, I., et al., Single-stranded DNA library preparation from highly degraded DNA using T4 DNA ligase, Nucleic Acids Res., 2017, vol. 45, no. 10. e79. https://doi.org/10.1093/nar/gkx033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Gansauge, M.-T. and Meyer, M., Selective enrichment of damaged DNA molecules for ancient genome sequencing, Genome Res., 2014, vol. 24, no. 9, pp. 1543—1549. https://doi.org/10.1101/gr.174201.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank M.V. Dobrovolskaya, N.A. Makarov (Institute of Archaeology, Russian Academy of Sciences) and A.P. Buzhilova (Research Institute and Museum of Anthropology, Moscow State University) for providing bone specimens.

Funding

This study was supported by the project of the Russian Ministry of Education and Science, system no. 075-10-2020-116 (grant no. 13.1902.21.0023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. V. Andreeva or E. I. Rogaev.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by N. Maleeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreeva, T.V., Malyarchuk, A.B., Soshkina, A.D. et al. Methodologies for Ancient DNA Extraction from Bones for Genomic Analysis: Approaches and Guidelines. Russ J Genet 58, 1017–1035 (2022). https://doi.org/10.1134/S1022795422090034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795422090034

Keywords:

Navigation