Skip to main content
Log in

Vernalization (VRN) and Photoperiod (PPD) Genes in Spring Hexaploid Wheat Landraces

  • PLANT GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The heading time in wheat and some other cereals is mainly determined by the genetic system of VRN (vernalization response) and PPD (photoperiod response) genes. Using diagnostic DNA markers, we analyzed VRN-A1, VRN-B1, VRN-D1, and PPD-D1 allelic diversity in a set of landraces representing seven hexaploid spring wheat species from several regions of Eurasia. The determination of the spring growth habit was found to be variable: in 55.3% accessions, it was controlled monogenically by a VRN gene; in 30.3% accessions, by a combination of two VRN genes; and in 2.6% accessions, trigenically. The dominant Ppd-D1a allele was almost completely absent (only 2.6%) in the landraces, which suggests it being secondary to the recessive ppd-D1b allele as well as increase in its frequency during the recent “green revolution.” In species T. aestivum, Т. compactum, T. petropavlovskyi, and T. tibetanum, the Vrn-D1a frequency was shown to increase eastward with maximum concentration in the regions of Afghanistan, India, and China. In species with a compact ear (T. antiquorum, T. sphaerococcum, and Asian forms of Т. compactum), the spring growth habit is controlled by a single Vrn-B1a allele, which indicates their possible initial distribution in the same gene pool. The European and Asian T. spelta subspecies, despite the very fragmented distribution range, have the same Vrn-A1b and Vrn-B1c alleles, which genetically unites these subspecies. A common set of alleles of the VRN genes in landraces and modern cultivars have provided the adaptability of wheat to diverse environmental conditions during the long period of its cultivation. The newly detected DNA fragments in the first intron of VRN-D1 and PPD-D1 loci may mark new alleles and be of interest for further examination and use in breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Stelmakh, A.F., Genetic effects of Vrn genes on heading date and agronomic traits in bread wheat, Euphytica, 1993, vol. 65, pp. 53—60. https://doi.org/10.1007/BF00022199

    Article  Google Scholar 

  2. Worland, A.J., Börner, A., Korzun, V., et al., The influence of photoperiod genes on the adaptability of European winter wheats, Euphytica, 1998, vol. 100, pp. 385—394. https://doi.org/10.1023/A:1018327700985

    Article  CAS  Google Scholar 

  3. Li, C.X., Lin, H.Q., Chen, A., et al., Wheat VRN1, FUL2 and FUL3 play critical and redundant roles in spikelet development and spike determinacy, Development, 2019, vol. 146, pp. 1—11. https://doi.org/10.1101/510388

    Article  CAS  Google Scholar 

  4. Debernardi, J.M., Greenwood, J.R., Finnegan, E.J., et al., APETALA 2-like genes AP2L2 and Q specify lemma identity and axillary floral meristem development in wheat, Plant J., 2020, vol. 101, pp. 171—187. https://doi.org/10.1111/tpj.14528

    Article  CAS  PubMed  Google Scholar 

  5. Distelfeld, A., Li, C., and Dubcovsky, J., Regulation of flowering in temperate cereals, Curr. Opin. Plant Biol., 2009, vol. 12, pp. 178—184. https://doi.org/10.1016/j.pbi.2008.12.010

    Article  CAS  PubMed  Google Scholar 

  6. Yan, L., Loukoianov, A., Tranquilli, G., et al., Positional cloning of the wheat vernalization gene VRN1, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, no. 10, pp. 6263—6268. https://doi.org/10.1073/pnas.0937399100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yan, L., Helguera, M., Kato, K., et al., Allelic variation at the VRN-1 promoter region in polyploidy wheat, Theor. Appl. Genet., 2004, vol. 109, no. 8, pp. 1677—1686. https://doi.org/10.1007/s00122-004-1796-4

    Article  CAS  PubMed  Google Scholar 

  8. Kippes, N., Zhu, J., Chen, A., et al., Fine mapping and epistatic interactions of the vernalization gene VRN-D4 in hexaploid wheat, Mol. Genet. Genomics, 2014, vol. 289, pp. 47—62. https://doi.org/10.1007/s00438-013-0788-y

    Article  CAS  PubMed  Google Scholar 

  9. Yan, L., Fu, D., Li, C., et al., The wheat and barley vernalization gene VRN3 is an orthologue of FT, Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, pp. 19581—19586. https://doi.org/10.1073/pnas.0607142103

  10. Fu, D., Szücs, P., Yan, L., et al., Large deletion within the first in Vrn-1 are associated with spring growth habit in barley and wheat, Mol. Gen. Genet., 2005, vol. 273, no. 1, pp. 54—65. https://doi.org/10.1007/s00438-004-1095-4

    Article  CAS  Google Scholar 

  11. Kato, H., Taketa, S., Ban, T., et al., The influence of a spring habit gene Vrn–D1, on heading time in wheat, Plant Breed., 2001, vol. 120, pp. 115—120. https://doi.org/10.1046/j.1439-0523.2001.00586.x

    Article  CAS  Google Scholar 

  12. Trevaskis, B., The central role of the VRN1 gene in the vernalization response of cereals, Funct. Plant Biol., 2010, vol. 37, pp. 479—487. https://doi.org/10.1071/FP10056

    Article  CAS  Google Scholar 

  13. Shcherban, A.B., Efremova, T.T., and Salina, E.A., Identification of a new Vrn-B1 allele using two near-isogenic wheat lines with difference in heading time, Mol. Breed., 2012, vol. 29, no. 3, pp. 675—685. https://doi.org/10.1007/s11032-011-9581-y

    Article  CAS  Google Scholar 

  14. Dorofeev, V.F., Pshenitsy mira (Wheats of the World), Leningrad: Kolos, 1976.

  15. Cockram, J., Jones, H., Leigh, F.J., et al., Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity, J. Exp. Bot., 2007, vol. 58, pp. 1231—1244. https://doi.org/10.1093/jxb/erm042 PMID:17420173

    Article  CAS  PubMed  Google Scholar 

  16. Blake, N.K., Lanning, S.P., Martin, J.M., et al., Effect of variation for major growth habit genes on maturity and yield in five spring wheat populations, Crop Sci., 2009, vol. 49, pp. 1211—1220. https://doi.org/10.2135/cropsci2008.08.0505

    Article  CAS  Google Scholar 

  17. Díaz, A., Zikhali, M., Turner, A.S., et al., Copy number variation affecting the Photoperiod–B1 and Vernalization–A1 genes is associated with altered flowering time in wheat (Triticum aestivum), PLoS One, 2012, vol. 7, no. 3. e33234. https://doi.org/10.1371/journal.pone.0033234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Andeden, E.E., Yediay, F.E., Baloch, F.S., et al., Distribution of vernalization and photoperiod genes (Vrn-A1, Vrn-B1, Vrn-D1, Vrn-B3, Ppd-D1) in Turkish bread wheat cultivars and landraces, Cereal Res. Commun., 2011, vol. 39, no. 3, pp. 352—364. https://doi.org/10.1556/CRC.39.2011.3.5

    Article  CAS  Google Scholar 

  19. Likhenko, I.E., Stasyuk, A.I., Shcherban’, A.B., et al., Study of allelic composition of Vrn-1 and Ppd-1 genes in early–ripening and middle–early varieties of spring soft wheat in Siberia, Russ. J. Genet., Appl. Res., 2015, vol. 5, pp. 198—207. https://doi.org/10.1134/S2079059715030107

    Article  CAS  Google Scholar 

  20. Kiss, T., Balla, K., Veisz, O., et al., Allele frequencies in the VRN-A1, VRN-B1 and VRN-D1 vernalization response and PPD-B1 and PPD-D1 photoperiod sensitivity genes, and their effects on heading in a diverse set of wheat cultivars (Triticum aestivum L.), Mol. Breed., 2014, vol. 34, pp. 297—310. https://doi.org/10.1007/s11032-014-0034-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yankovskaya, A.A., Fisenko, A.V, and Dragovich., A.Yu., Genetic diversity of spring bread wheat varieties from the European part of Russia at the VRN and PPD genes affecting heading time, Genetica (Moscow), 2018, vol. 54, no. 13, pp. S32—S36. https://doi.org/10.1134/S0016675818130209

    Article  Google Scholar 

  22. Grogan, S.M., Brown-Guedira, G., Haley, S.D., et al., Allelic variation in developmental genes and effects on winter wheat heading date in the U.S. Great Plains, PLoS One, 2016, vol. 11, no. 4. e0152852. https://doi.org/10.1371/journal.pone.0152852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dobrotvorskaya, T.V., Martynov, S.P., and Pukhalskyi, V.A., Trends in genetic diversity change of spring bread wheat cultivars released in Russia in 1929—2003, Russ. J. Genet., 2004, vol. 40, no. 11, pp. 1245—1257. https://doi.org/10.1023/B:RUGE.0000048667.39464.54

    Article  CAS  Google Scholar 

  24. Novoselskaya-Dragovich, A.Y., Fisenko, A.V., Imasheva, A.G., and Pukhalskiy, V.A., Comparative analysis of the genetic diversity dynamics at gliadin loci in the winter common wheat Triticum aestivum L. cultivars developed in Serbia and Italy over 40 years of scientific breeding, Russ. J. Genet., 2007, vol. 43, no. 11, pp. 1236—1242. https://doi.org/10.1134/S1022795407110051

    Article  CAS  Google Scholar 

  25. Goncharov, N.P., Sravnitel’naya genetika pshenits i ikh sorodichei (Comparative Genetics of Wheat and Their Relatives), Novosibirsk: Geo, 2012, 2nd ed.

    Google Scholar 

  26. Potokina, E.K., Koshkin, V.A., Alekseeva, E.A., et al., The combination of the Ppd and Vrn gene alleles determines the heading date in common wheat varieties, Russ. J. Genet., Appl. Res., 2012, vol. 2, no. 4, pp. 311—318. https://doi.org/10.1134/S2079059712040089

    Article  Google Scholar 

  27. McIntosh, R.A., Yamazaki, Y., Dubcovsky, J., et al., Catalogue of Gene Symbols for Wheat, in The 11th International Wheat Genetics Symposium, Brisbane, Australia, 2008.

  28. Torres, A.M., Weeden, N.F., and Martin, A., Linkage among isozyme: RFLP and RAPD markers in Vicia faba, Theor. Appl. Genet., 1993, vol. 85, pp. 937—945. https://doi.org/10.1007/BF00215032

    Article  CAS  PubMed  Google Scholar 

  29. Beales, J., Turner, A., Griffiths, S., et al., A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (T. aestivum L.), Theor. Appl. Genet., 2007, vol. 115, no. 5, pp. 721—733. https://doi.org/10.1007/s00122-007-0603-4

    Article  CAS  PubMed  Google Scholar 

  30. Yakubtsiner, M.M., On the history of wheat culture in the USSR, in Materialy po istorii zemledeliya v SSSR (Materials on the History of Agriculture in the USSR), Leningrad: Nauka, 1956, pp. 16—169.

  31. Stel’makh, A.F. and Avsenin, V.I., Domestic varieties of spring bread wheat—carriers of Vrn gene, Nauchno-Tekh. Byull. Vses. Sel.-Genet. Inst., 1983, issue 4(50), pp. 32—36.

  32. Chen, A. and Dubcovsky, J., Wheat tilling mutants show that the vernalization gene VRN1 down-regulates the flowering repressor VRN2 in leaves but is not essential for flowering, PLoS Genet., 2012, vol. 8, no. 12. e1003134. https://doi.org/10.1371/journal.pgen.1003134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kippes, N., Chen, A., Zhang, X., et al., Development and characterization of a spring hexaploid wheat line with no functional VRN2 genes, Theor. Appl. Genet., 2016, vol. 129, no. 7, pp. 1417—1428. https://doi.org/10.1007/s00122-018-3141-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Allard, V., Veisz, O., Kõszegi, B., et al., The quantitative response of wheat vernalization to environmental variables indicates that vernalization is not a response to cold temperature, J. Exp. Bot., 2012, vol. 63, no. 2, pp. 847—857. https://doi.org/10.1093/jxb/err316

    Article  CAS  PubMed  Google Scholar 

  35. Muterko, A., Kalendar, R., and Salina, E., Novel alleles of the VRN1 genes in wheat are associated with modulation of DNA curvature and flexibility in the promoter region, BMC Plant Biol., 2016, vol. 16, pp. 65—81. https://doi.org/10.1186/s12870-015-0691-2

    Article  CAS  Google Scholar 

  36. Golovnina, K.A., Kondratenko, E.Y., Blinov, A.G., and Goncharov, N.P., Molecular characterization of vernalization loci VRN1 in wild and cultivated wheats, BMC Plant Biol., 2010, vol. 10, p. 168. https://doi.org/10.1186/1471-2229-10-168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Diallo, A.O., Ali-Benali, M.A., Badawi, M., et al., Expression of vernalization responsive genes in wheat is associated with histone H3 trimethylation, Mol. Genet. Genomics, 2012, vol. 287, no. 7, pp. 575—590. https://doi.org/10.1007/s00438-012-0701-0

    Article  CAS  PubMed  Google Scholar 

  38. Gryaznevich, P.A., Historical and archeological monuments of ancient and medieval Yemen: field studies 1970—1971, in Yuzhnaya Araviya: pamyatniki drevnei istorii i kul’tury (South Arabia: Monuments of Ancient History and Culture), St. Petersburg, 1994, issue 2, part 1.

  39. Badaeva, E.D., Dedkova, O.S., Pukhalskiy, V.A., et al., Chromosomal passports provide new insights into diffusion of emmer wheat, PLoS One, 2015, vol. 10, no. 5, pp. e0128556. https://doi.org/10.1371/journal.pone.0128556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shcherban, A.B., Boerner, A., and Salina, E.A., Effect of VRN-1 and PPD-D1 genes on heading time in European bread wheat cultivars, Plant Breed., 2015, vol. 134, pp. 49—55. https://doi.org/10.1111/pbr.12223

    Article  CAS  Google Scholar 

  41. Udachin, R.A., On the possible current existence of Triticum antiquorum Heer, Naucho-Tekhn. Byull. Vses. Nauchno-Issled. Istor. Rastenievod., 1982, no. 119, pp. 72—73.

  42. Feldman, M., The World Wheat Book: A History of Wheat Breeding, Intercept: London, 2001.

    Google Scholar 

  43. Novoselskaya-Dragovich, A.Yu., Fisenko, A.V., Konovalov, F.A., et al., Analysis of genetic diversity and evolutionary relationships among hexaploid wheats Triticum L. using LTR-retrotransposon-based molecular markers, Genet. Resour. Crop Evol., 2018, vol. 65, pp. 187—198. https://doi.org/10.1007/s10722-017-0520-6

    Article  CAS  Google Scholar 

  44. Dedkova, O.S., Badaeva, E.D., Mitrofanova, O.P., et al., Analysis of intraspecific divergence of hexaploid wheat Triticum spelta L. by C-banding of chromosomes, Russ. J. Genet., 2004, vol. 40, no. 10, pp. 1111—1126. https://doi.org/10.1023/B:RUGE.0000044755.18085.7e

    Article  CAS  Google Scholar 

  45. Yang, F.P., Zhang, X.K., Xia, X.C., et al., Distribution of photoperiod insensitive Ppd-D1a allele in Chinese wheat cultivars, Euphytica, 2009, vol. 165, pp. 445—452. https://doi.org/10.1007/s10681-008-9745-y

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Dragovich.

Ethics declarations

The authors declare that they have no conflict of interest.

The studies were performed without the use of animals and without the involvement of human subjects.

Additional information

Translated by A. Lisenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dragovich, A.Y., Fisenko, A.V. & Yankovskaya, A.A. Vernalization (VRN) and Photoperiod (PPD) Genes in Spring Hexaploid Wheat Landraces. Russ J Genet 57, 329–340 (2021). https://doi.org/10.1134/S1022795421030066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795421030066

Keywords:

Navigation