Skip to main content
Log in

Genetic Diversity and Differentiation of Northern Populations of Pedunculate Oak Based on Analysis of New SNP Markers

  • SHORT COMMUNICATIONS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The gene pool of populations of pedunculate oak (Quercus robur L.) from the north of the Russian part of the range of the species was studied using a set of 94 SNP loci. They were developed using the new generation DNA sequencing technology (ddRAD). Similar levels of genetic diversity were found in isolated stands with a small number of trees (expected heterozygosity HE = 0.313 ± 0.011, observed heterozygosity HO = 0.334 ± 0.004, allelic diversity υa = 1.540 ± 0.021, coefficient of inbreeding FIS = –0.067) and in relatively large populations (HE = 0.306 ± 0.010, HO = 0.318 ± 0.012, υa = 1.530 ± 0.021, FIS = –0.039). Statistically significant levels of interpopulation differentiation and population fixation (delta_T = 0.0993; Gregorius genetic distances d0 = 0.104–0.144, FST = 0.0725) were detected. Bayesian cluster analysis allowed identifying genetically distinct genetic groups. The results obtained are discussed taking into account the history of the distribution of pedunculate oak in the north of its range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Alberto, F.G., Aitken, S.N., Alía, R., et al., Potential for evolutionary responses to climate change—evidence from tree populations, Global Change Biol., 2013, vol. 19, no. 6, pp. 1645—1661. https://doi.org/10.1111/gcb.12181

    Article  Google Scholar 

  2. Parmesan, C., Ecological and evolutionary responses to recent climate change, Ann. Rev. Ecol. Evol. Syst., 2006, vol. 37, pp. 637—666. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100

    Article  Google Scholar 

  3. Pohjanmies, T., Elshibli, S., Pulkkinen, P., et al., Fragmentation-related patterns of genetic differentiation in pedunculate oak (Quercus robur) at two hierarchical scales, Silva Fenn., 2015, vol. 50, no. 2. https://doi.org/10.14214/sf.1510

  4. Aitken, S.N., Yeaman, S., Holliday, J.A., et al., Adaptation, migration or extirpation, climate change outcomes for tree populations, Evol. Appl., 2008, vol. 1, pp. 95—111. https://doi.org/10.1111/j.1752-4571.2007.00013.x

    Article  PubMed  PubMed Central  Google Scholar 

  5. Eckert, C.G., Samis, K.E., and Lougheed, S.C., Genetic variation across species’ geographical ranges, the central-marginal hypothesis and beyond, Mol. Ecol., 2008, vol. 17, pp. 1170—1188. https://doi.org/10.1111/j.1365-294X.2007.03659.x

    Article  CAS  PubMed  Google Scholar 

  6. Petit, R.J., Csaikl, U.M., Bordacs, S., et al., Chloroplast DNA variation in European white oaks—phylogeography and patterns of diversity based on data from over 2600 populations, For. Ecol. Manage., 2002, vol. 156, pp. 5—26. https://doi.org/10.1016/S0378-1127(01)00645-4

    Article  Google Scholar 

  7. Peterson, B.K., Weber, J.N., Kay, E.H., et al., Double Digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species, PLoS One, 2012, vol. 7. https://doi.org/10.1371/journal.pone.0037135

  8. Ahrens, C.W., Byrne, M., and Rymer, P.D., Standing genomic variation within coding and regulatory regions contributes to the adaptive capacity to climate in a foundation tree species, Mol. Ecol., 2019, vol. 28, no. 10, pp. 2502—2516. https://doi.org/10.1111/mec.15092

    Article  CAS  PubMed  Google Scholar 

  9. Leroy, T., Louvet, J.M., Lalanne, C., et al., Adaptive introgression as a driver of local adaptation to climate in European white oaks, New Phytol., 2019. https://doi.org/10.1111/nph.16095

  10. Degen, B., Yanbaev, R., and Yanbaev, Y., Genetic differentiation of Quercus robur in the South-Ural, Silvae Genet., 2019, vol. 68, no. 1, pp. 111—115. https://doi.org/10.2478/sg-2019-0019

    Article  Google Scholar 

  11. Tsaralunga, V.V., Furmenkova, E.S., and Kryukova, A.A., Vneshnie priznaki patologii duba chereshchatogo (External Signs of Pedunculate Oak Pathology), Voronezh: Voronezhskiy Gosudarstvennyi Lesotekhnicheskii Universitet, 2015.

  12. Blanc-Jolivet, C., Bakhtina, S., Yanbaev, R., et al., Development of new SNPs loci on Quercus robur and Quercus petraea for genetic studies covering the whole species’ distribution range, Conserv. Genet. Res., 2020. https://doi.org/10.1007/s12686-020-01141-z

  13. Willing, E.-M., Dreyer, C., and van Oosterhout, C., Estimates of genetic differentiation measured by FST do not necessarily require large sample sizes when using many SNP markers, PLoS One, 2012, vol. 7, no. 8. https://doi.org/10.1371/journal.pone.0042649

  14. Dumolin, S., Demesure, B., and Petit, R.J., Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method, Theor. Appl. Genet., 1995, vol. 91, pp. 1253—1256.

    Article  CAS  PubMed  Google Scholar 

  15. Hammer, O., Harper, D.A.T., and Ryan, P.D., PAST: paleontological statistics software package for education and data analysis, Paleontol. Electron., 2001, vol. 4, no. 1, pp. 1—9.

    Google Scholar 

  16. Gregorius, H.R., The relationship between the concepts of genetic diversity and differentiation, Theor. Appl. Genet., 1987, vol. 74, pp. 397—401.

    Article  CAS  PubMed  Google Scholar 

  17. Weir, B.S. and Cockerham, C.C., Estimating F-statistics for the analysis of population structure, Evolution, 1984, vol. 38, pp. 1358—1370.

    CAS  PubMed  Google Scholar 

  18. Gregorius, H.R., A unique genetic distance, Biom. J., 1984, vol. 26, no. 1, p. 13.

    Article  Google Scholar 

  19. Pritchard, J.K., Stephens, M., and Donnelly, P., Inference of population structure using multilocus genotype data, Genetics, 2000, vol. 155, no. 2, pp. 945—959.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Evanno, G., Regnaut, S., and Goudet, J., Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study, Mol. Ecol., 2005, vol. 14, no. 8, pp. 2611—2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  21. Kopelman, N.M., Mayzel, J., Jakobsson, M., et al., Clumpak: a program for identifying clustering modes and packaging population structure inferences across K, Mol. Ecol. Res., 2015, vol. 15, no. 5, pp. 1179—1191. https://doi.org/10.1111/1755-0998.12387

    Article  CAS  Google Scholar 

  22. Bushbom, J., Yanbaev, Y., and Degen, B., Efficient long-distance gene flow into an isolated relict oak stand, J. Hered., 2011, vol. 102, no. 4, pp. 464—472. https://doi.org/10.1093/jhered/esr023

    Article  Google Scholar 

  23. Neishtadt, M.I., Istoriya lesov i paleogeografiya SSSR v golotsene (History of Forests and Paleogeography of the Soviet Union in the Holocene), Moscow: Akad. Nauk, 1957.

  24. Kozharinov, A.V. and Borisov, P.V., Distribution of oak forests in Eastern Europe over the last 13000 years, Contemp. Probl. Ecol., 2013, vol. 6, pp. 755—760. https://doi.org/10.1134/S199542551307007X

    Article  Google Scholar 

  25. Denisov, A.K., Postglacial dynamics of the northern border of the pedunculate oak range in the USSR and the phylogeny of northern oak forests, Lesovedenie, 1980, no. 1, pp. 3—11.

  26. Gorchakovskii, P.L., Plants of European deciduous forests at the eastern limit of their range, Trudy Instituta Ekologii Rasteniy i Zhivotnykh (Proceedings of the Institute of Plant and Animal Ecology), Sverdlovsk, 1968, issue 59.

  27. Semerikov, L.F., Populyatsionnaya struktura drevesnykh rastenii (na primere duba Yevropeyskoy chasti SSSR i Kavkaza) (Population Structure of Woody Plants (on the Example of Oak in the European Part of the USSR and the Caucasus), Moscow: Nauka, 1986.

Download references

Funding

The study was supported by a grant from the Russian Science Foundation (project no. 19-16-00084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. A. Yanbaev.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Degen, B., Yanbaev, Y.A., Ianbaev, R.Y. et al. Genetic Diversity and Differentiation of Northern Populations of Pedunculate Oak Based on Analysis of New SNP Markers. Russ J Genet 57, 374–378 (2021). https://doi.org/10.1134/S1022795421030054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795421030054

Keywords:

Navigation