Skip to main content
Log in

Protamine 1 and 2 mRNA Abundance in Human Spermatozoa and Its Relation to Semen Quality and Sperm DNA Fragmentation among Fertility Clinic Patients

  • HUMAN GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Sperm contain a complex population of coding and noncoding RNA, and the utility of sperm RNA in fertility research is currently being explored. The aim of this study was to estimate the content of transcripts of protamines 1 and 2 in human ejaculated spermatozoa in relation to semen quality and sperm DNA fragmentation between fertile and infertile patients. Human ejaculates were obtained from 33 patients and semen analyzes were assessed by WHO criteria (2010). We evaluated the sperm DNA fragmentation measured by TUNEL assay. The ejaculates of patients were purified by density-gradient centrifugation, sperm cells were lysed, and mRNA was extracted, reverse transcribed, and subjected to real-time qPCR using specific primer pairs for protamine-1, protamine-2 RNA. The sperm protamine mRNA ratio in normozoospermic men (n = 19; 2.86 ± 0.16) differed significantly from that of patozoospermic patients (n = 14; 3.43 ± 0.22; p < 0.05). A significant correlation was shown between sperm DNA fragmentation and the PRM2/PRM1 mRNA ratio (r = 0.33; p < 0.05). In the group of patients with an increased sperm DNA fragmentation (n = 14; 2.74 ± 0.18), the PRM2/PRM1 ratio was significantly higher than in the group of patients with normal rates (n = 19; 3.26 ± 0.19; p < 0.05). An abnormal sperm protamine ratio was associated with poor semen quality and DNA fragmentation. Finding sperm-quality markers would help to understand the causes of male infertility and to improve male reproductive health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Oliva, R., Protamines and male infertility, Hum. Reprod. Update., 2006, vol. 12, no. 4, pp. 417–435. https://doi.org/10.1093/humupd/dml009

    Article  CAS  PubMed  Google Scholar 

  2. Jodar, M., Selvaraju, S., Sendler, E., et al., The presence, role and clinical use of spermatozoal RNAs, Hum. Reprod. Update., 2013, vol. 19, no. 6, pp. 604–624. https://doi.org/10.1093/humupd/dmt031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sendler, E., Johnson, G.D., Mao, S., et al., Stability, delivery and functions of human sperm RNAs at fertilization, Nucleic Acids Res., 2013, vol. 41, no. 7, pp. 4104–4117. https://doi.org/10.1093/nar/gkt132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jodar, M., Sendler, E., Moskovtsev, S.I., et al., Absence of sperm RNA elements correlates with idiopathic male infertility, Sci. Transl. Med., 2015, vol. 7, p. 295. https://doi.org/10.1126/scitranslmed.aab1287

    Article  CAS  Google Scholar 

  5. Godia, M., Swanson, G., and Krawetz, S.A., A history of why fathers’ RNA matters, Biol. Reprod., 2018, vol. 99, no. 1, pp. 147–159. https://doi.org/10.1093/biolre/ioy007

    Article  PubMed  Google Scholar 

  6. Krawetz, S.A., Paternal contribution: new insights and future challenges, Nat. Rev. Genet., 2005, vol. 6, no. 8, pp. 633–642. https://doi.org/10.1038/nrg1654

    Article  CAS  PubMed  Google Scholar 

  7. Carrell, D.T., Epigenetics of the male gamete, Fertil. Steril., 2012, vol. 97, no. 2, pp. 267–274. https://doi.org/10.1016/j.fertnstert.2011.12.036

    Article  CAS  PubMed  Google Scholar 

  8. Rando, O.J., Daddy issues: paternal effects on phenotype, Cell, 2012, vol. 151, no. 4, pp. 702–708. https://doi.org/10.1016/j.cell.2012.10.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Castillo, J., Estanyol, J.M., Ballescà, J.L., and Oliva, R., Human sperm chromatin epigenetic potential: genomics, proteomics, and male infertility, Asian J. Androl., 2015, vol. 17, pp. 601–609. https://doi.org/10.4103/1008-682X.153302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen, Q., Yan, W., and Duan, E., Epigenetic inheritance of acquired traits through sperm RNAs and sperm RNA modifications, Nat. Rev. Genet., 2016, vol. 17, no. 12, pp. 733–743. https://doi.org/10.1038/nrg.2016.106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ammer, H., Henschen, A., and Lee, C.H., Isolation and amino-acid sequence analysis of human sperm protamines P1 and P2: occurrence of two forms of protamine P2, Biol. Chem. Hoppe Seyler, 1986, vol. 367, no. 1, pp. 515–522. https://doi.org/10.1515/bchm3.1986.367.1.515

    Article  CAS  PubMed  Google Scholar 

  12. Steger, K., Klonisch, .T, Gavenis, K., et al., Expression of mRNA and protein of nucleoproteins during human spermiogenesis, Mol. Hum. Reprod., 1998, vol. 4, no. 10, pp. 939–945. https://doi.org/10.1093/molehr/4.10.939

    Article  CAS  PubMed  Google Scholar 

  13. Steger, K., Pauls, K., Klonisch, T., et al., Expression of protamine-1 and -2 mRNA during human spermiogenesis, Mol. Hum. Reprod., 2000, vol. 6, no. 3, pp. 219–225. https://doi.org/10.1093/molehr/6.3.219

    Article  CAS  PubMed  Google Scholar 

  14. Aoki, V.W., Emery, B.R., Liu, L., and Carrell, D.T., Protamine levels vary between individual sperm cells of infertile human males and correlate with viability and DNA integrity, J. Androl., 2006, vol. 27, no. 6, pp. 890–898. https://doi.org/10.2164/jandrol.106.000703

    Article  CAS  PubMed  Google Scholar 

  15. Morales, C.R., Kwon, Y.K., and Hecht, N.B., Cytoplasmic localization during storage and translation of the mRNAs of transition protein 1 and protamine 1, two translationally regulated transcripts of the mammalian testis, J. Cell Sci., 1991, vol. 100, no. 1, pp. 119–131. http://www.ncbi.nlm.nih.gov/pubmed/1795020.

    CAS  PubMed  Google Scholar 

  16. Balhorn, R., Cosman, M., Thornton, K., et al., Protamine mediated condensation of DNA in mammalian sperm, in The Male Gamete: From Basic Science to Clinical Applications, Salt Lake City, Utah: American Society of Andrology, 1999, pp. 707–907.

    Google Scholar 

  17. Simon, L., Murphy, K., Shamsi, M.B., et al., Paternal influence of sperm DNA integrity on early embryonic development, Hum. Reprod., 2014, vol. 29, no. 11, pp. 2402–2412. https://doi.org/10.1093/humrep/deu228

    Article  CAS  PubMed  Google Scholar 

  18. Mengual, L., Ballescà, J.L., Ascaso, C., and Oliva, R., Marked differences in protamine content and P1/P2 ratios in sperm cells from percoll fractions between patients and controls, J. Androl., 2003, vol. 24, no. 3, pp. 438–447. https://doi.org/10.1002/j.1939-4640.2003.tb02692.x

    Article  PubMed  Google Scholar 

  19. Wright, C., Milne, S., and Leeson, H., Sperm DNA damage caused by oxidative stress: modifiable clinical, lifestyle and nutritional factors in male infertility, Reprod. Biomed. Online, 2014, vol. 28, no. 6, pp. 684–703. https://doi.org/10.1016/j.rbmo.2014.02.004

    Article  CAS  PubMed  Google Scholar 

  20. Miller, D., Briggs, D., Snowden, H., et al., A complex population of RNAs exists in human ejaculate spermatozoa: implications for understanding molecular aspects of spermiogenesis, Gene, 1999, vol. 237, no. 2, pp. 385–392. https://doi.org/10.1016/s0378-1119(99)00324-8

    Article  CAS  PubMed  Google Scholar 

  21. Ostermeier, G.C., Dix, D.J., Miller, D., et al., Spermatozoal RNA profiles of normal fertile men, Lancet, 2002, vol. 360, no. 9335, pp. 772–777. https://doi.org/10.1016/S0140-6736(02)09899-9

    Article  CAS  PubMed  Google Scholar 

  22. Kempisty, B., Depa-Martynow, M., Lianeri, M., et al., Evaluation of protamines 1 and 2 transcript contents in spermatozoa from asthenozoospermic men, Folia Histochem. Cytobiol., 2007, vol. 45, no. 1, pp. 109–113. http://www.ncbi.nlm.nih.gov/pubmed/18292846.

    CAS  Google Scholar 

  23. González-Marín, C., Gosálvez, J., and Roy, R., Types, causes, detection and repair of DNA fragmentation in animal and human sperm cells, Int. J. Mol. Sci., 2012, vol. 13, no. 11, pp. 14026–14052. https://doi.org/10.3390/ijms131114026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. WHO Laboratory Manual for the Examination and Processing of Human Semen, 2010.

  25. Efimova, O.A., Pendina, AA., Tikhonov, A.V., et al., Genome-wide 5-hydroxymethylcytosine patterns in human spermatogenesis are associated with semen quality, Oncotarget, 2017, vol. 8, no. 51, pp. 88294–88307. https://doi.org/10.18632/oncotarget.18331

    Article  PubMed  PubMed Central  Google Scholar 

  26. Virro, M.R., Larson-Cook, K.L., Evenson, D.P., et al., Sperm chromatin structure assay (scsa®) parameters are related to fertilization, blastocyst development, and ongoing pregnancy in in vitro fertilization and intracytoplasmic sperm injection cycles, Fertil. Steril., 2004, vol. 81, no. 5, pp. 1289–1295. https://doi.org/10.1016/j.fertnstert.2003.09.063

    Article  PubMed  Google Scholar 

  27. Evenson, D. and Wixon, R., Meta-analysis of sperm DNA fragmentation using the sperm chromatin structure assay, Rep. BioMed Online, 2006, vol. 12, no. 4, pp. 466–472. https://doi.org/10.1016/S1472-6483(10)62000-7

    Article  CAS  Google Scholar 

  28. Hecht, N.B., Regulation of “haploid expressed genes” in male germ cells, J. of Reprod. Fertil., 1990, vol. 88, pp. 679–693. https://doi.org/10.1530/jrf.0.0880679

    Article  CAS  Google Scholar 

  29. Grunewald, S., Paasch, U., Glander, H.J., and Anderegg, U., Mature human spermatozoa do not transcribe novel RNA, Andrologia, 2005, vol. 37, no. 2, pp. 69–71. https://doi.org/10.1111/j.1439-0272.2005.00656.x

    Article  CAS  PubMed  Google Scholar 

  30. Steger, K., Transcriptional and translational regulation of gene expression in haploid spermatids, Anat. Embryol. (Berlin), 1999, vol. 199, no. 6, pp. 471–487. https://doi.org/10.1007/s004290050245

    Article  CAS  Google Scholar 

  31. Ahmadi, A. and Ng, S.C., Destruction of protamine in human sperm inhibits sperm binding and penetration in the zona-free hamster penetration test but increases sperm head decondensation and male pronuclear formation in the hamster-ICSI assay, J. Assist. Reprod. Genet., 1999, vol. 16, no. 3, pp. 128–132. https://doi.org/10.1023/a:1022527714175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nanassy, L., Liu, L., Griffin, J.T., and Carrell, D., The clinical utility of the protamine 1/protamine 2 ratio in sperm, Protein Pept. Lett., 2012, vol. 18, no. 8, pp. 772–777. https://doi.org/10.2174/092986611795713934

    Article  Google Scholar 

  33. Depa-Martynow, M., Kempisty, B., Jagodziński, P.P., et al., Impact of protamine transcripts and their proteins on the quality and fertilization ability of sperm and the development of preimplantation embryos, Reprod. Biol., 2012, vol. 12, no. 1, pp. 57–72. https://doi.org/10.1016/s1642-431x(12)60077-1

    Article  PubMed  Google Scholar 

  34. Rogenhofer, N., Dansranjavin, T., Schorsch, M., et al., The sperm protamine mRNA ratio as a clinical parameter to estimate the fertilizing potential of men taking part in an ART programme, Hum. Reprod., 2013, vol. 28, no. 4, pp. 969–978. https://doi.org/10.1093/humrep/des471

    Article  CAS  PubMed  Google Scholar 

  35. Platts, A.E., Dix, D.J., Chemes, H.E., et al., Success and failure in human spermatogenesis as revealed by teratozoospermic RNAs, Hum. Mol. Genet., 2007, vol. 16, no. 7, pp. 763–773. https://doi.org/10.1093/hmg/ddm012

    Article  CAS  PubMed  Google Scholar 

  36. Savadi-Shiraz, E., Edalatkhah, H., Talebi, S., et al., Quantification of sperm specific mRNA transcripts (PRM1, PRM2, and TNP2) in teratozoospermia and normozoospermia: new correlations between mRNA content and morphology of sperm, Mol. Reprod. Dev., 2015, vol. 82, no. 1, pp. 26–35. https://doi.org/10.1002/mrd.22440

    Article  CAS  PubMed  Google Scholar 

  37. Miyagawa, Y., Nishimura, H., Tsujimura, A., et al., Single-nucleotide polymorphisms and mutation analyses of the TNP1 and TNP2 genes of fertile and infertile human male populations, J. Androl., 2005, vol. 26, no. 6, pp. 779–786. https://doi.org/10.2164/jandrol.05069

    Article  CAS  PubMed  Google Scholar 

  38. Evenson, D.P., Larson, K.L., and Jost, L.K., Sperm chromatin structure assay: its clinical use for detecting sperm DNA fragmentation in male infertility and comparisons with other techniques, J. Androl., 2002, vol. 23, no. 1, pp. 25–43. http://www.ncbi.nlm.nih. gov/pubmed/11780920.

    Article  Google Scholar 

  39. Seli, E., Spermatozoal nuclear determinants of reproductive outcome: implications for ART, Hum. Reprod. Update., 2005, vol. 11, no. 4, pp. 337–349. https://doi.org/10.1093/humupd/dmi011

    Article  CAS  PubMed  Google Scholar 

  40. Shamsi, M.B., Kumar, R., and Dada, R., Evaluation of nuclear DNA damage in human spermatozoa in men opting for assisted reproduction, Indian J. Med. Res., 2008, vol. 127, no. 2, pp. 115–123. http://www.ncbi.nlm.nih.gov/pubmed/18403788.

    CAS  PubMed  Google Scholar 

  41. Simon, L., Castillo, J., Oliva, R., and Lewis, S.E., Relationships between human sperm protamines, DNA damage and assisted reproduction outcomes, Reprod. Biomed. Online., 2011, vol. 23, no. 6, pp. 724–734. https://doi.org/10.1016/j.rbmo.2011.08.010

    Article  CAS  PubMed  Google Scholar 

  42. Hosen, M.B., Islam, M.R., Begum, F., et al., Oxidative stress induced sperm DNA damage, a possible reason for male infertility, Iran. J. Reprod. Med., 2015, vol. 13, no. 9, pp. 525–532. http://www.ncbi.nlm.nih.gov/ pubmed/26568756.

    PubMed  PubMed Central  Google Scholar 

  43. Simon, L., Zini, A., Dyachenko, A., et al., A systematic review and meta-analysis to determine the effect of sperm DNA damage on in vitro fertilization and intracytoplasmic sperm injection outcome, Asian J. Androl., 2017, vol. 19, no. 1, pp. 80–90. https://doi.org/10.4103/1008-682X.182822

    Article  PubMed  Google Scholar 

  44. Zheng, W.W., Song, G., Wang, Q.L., et al., Sperm DNA damage has a negative effect on early embryonic development following in vitro fertilization, Asian J. Androl., 2018, vol. 20, no. 1, pp. 75–79. https://doi.org/10.4103/aja.aja_19_17

    Article  CAS  PubMed  Google Scholar 

  45. Pellestor, F., Gatinois, V., Puechberty, J., et al., Chromothripsis: potential origin in gametogenesis and preimplantation cell divisions: a review, Fertil. Steril., 2014, vol. 102, no. 6, pp. 1785–1796. https://doi.org/10.1016/j.fertnstert.2014.09.006

    Article  PubMed  Google Scholar 

  46. Koltsova, A.S., Pendina, A.A., Efimova, O.A., et al., On the complexity of mechanisms and consequences of chromothripsis: an update, Front. Genet., 2019, vol. 10, no. 4, p. 393. https://doi.org/10.3389/fgene.2019.00393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Agarwal, A. and Allamaneni, S.R., Sperm DNA damage assessment: a test whose time has come, Fertil. Steril., 2005, vol. 84, no. 4, pp. 850–853. https://doi.org/10.1016/j.fertnstert.2005.03.080

    Article  PubMed  Google Scholar 

Download references

Funding

This study was financed by the Russian Science Foundation (grant no. 18-75-10046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Ishchuk.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in a study involving people comply with the ethical standards of the institutional and/or national committee for research ethics and the 1964 Helsinki Declaration and its subsequent changes or comparable ethical standards.

Informed voluntary consent was obtained from each of the participants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishchuk, M.A., Malysheva, O.V., Komarova, E.M. et al. Protamine 1 and 2 mRNA Abundance in Human Spermatozoa and Its Relation to Semen Quality and Sperm DNA Fragmentation among Fertility Clinic Patients. Russ J Genet 57, 213–220 (2021). https://doi.org/10.1134/S1022795421020058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795421020058

Keywords:

Navigation