Skip to main content
Log in

Synthesis of Flavonoid Pigments in Grain of Representatives of Poaceae: General Patterns and Exceptions in N.I. Vavilov’s Homologous Series

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Flavonoid pigments are a group of secondary plant metabolites. Interest in these compounds is determined by a wide range of their biological properties; thus the saturation of edible parts of plants, in particular, cereal grains, with flavonoids is an urgent task today. The synthesis of flavonoid pigments can be observed in the testa, pericarp, aleurone layer, and grain endosperm in representatives of most cereal crops (maize Zea mays L., rice Oryza sativa L., bread wheat Triticum aestivum L., barley Hordeum vulgare L., rye Secale cereale L., sorghum Sorghum bicolor (L.) Moench., etc.), which is consistent with N.I. Vavilov’s law of homologous series in hereditary variation. However, according to some features, certain types of variability are not observed: for example, in some representatives of the tribe Triticeae, no forms synthesizing anthocyanins in the aleurone layer are found. Homologous series have not been identified for some unique features. For example, compounds belonging to the group of 3-deoxyanthocyanidins having a yellow-orange color uncharacteristic of cereal crops are synthesized in the pericarp only in sorghum. This review provides information on the genetic diversity and biosynthesis of flavonoid pigments in the cereal grains, characterizing the nature of the observed patterns and exceptions to Vavilov’s law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Kellogg, E.A., Flowering plants: Monocots. Poaceae, vol. 13 of The Families and Genera of Vascular Plants, Kubitski, K., Ed., Cham: Springer-Verlag, 2015. https://doi.org/10.1007/978-3-319-15332-2

  2. Soreng, R.J., Peterson, P.M., Romaschenko, K., et al., A worldwide phylogenetic classification of the Poaceae (Gramineae), J. Syst. Evol., 2015, vol. 53, no. 2, pp. 117—137. https://doi.org/10.1111/jse.12150

    Article  Google Scholar 

  3. Soreng, R.J., Peterson, P.M., Romaschenko, K., et al., A worldwide phylogenetic classification of the Poaceae (Gramineae): II. An update and a comparison of two 2015 classifications, J. Syst. Evol., 2017, vol. 55, no. 4, pp. 259—290. https://doi.org/10.1111/jse.12262

    Article  Google Scholar 

  4. Strömberg, C.A.E., Evolution of grasses and grassland ecosystems, Annu. Rev. Earth Planet. Sci., 2011, vol. 39, pp. 517—544. https://doi.org/10.1146/annurev-earth-040809-152402

    Article  CAS  Google Scholar 

  5. Tzvelev, N.N., The system of grasses (Poaceae) and their evolution, Bot. Rev., 1989, vol. 55, no. 3, pp. 141—203. https://doi.org/10.1007/BF02858328

    Article  Google Scholar 

  6. The Plant List, version 1.1. 2013. http://www.theplantlist.org/. Accessed March 1, 2020.

  7. Gibson, D.J., Grasses and Grassland Ecology, Oxford, UK: Oxford Univ. Press, 2009. https://doi.org/10.1093/aob/mcp219

    Book  Google Scholar 

  8. Hodkinson, T.R., Evolution and taxonomy of the grasses (Poaceae): a model family for the study of species-rich groups, Annu. Plant Rev., 2018, vol. 1, no. 1. https://doi.org/10.1002/9781119312994.apr0622

  9. Kellogg, E.A., Evolutionary history of the grasses, Plant Physiol., 2001, vol. 125, no. 3, pp. 1198—1205. https://doi.org/10.1104/pp.125.3.1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hilu, K.W., Phylogenetics and chromosomal evolution in the Poaceae (grasses), Aust. J. Bot., 2004, vol. 52, no. 1, pp. 13—22. https://doi.org/10.1071/BT03103

    Article  CAS  Google Scholar 

  11. de Wet, J.M.J., Chromosome numbers of a few South African grasses, Cytologia (Tokyo), 1954, vol. 19, nos. 2—3, pp. 97—103. https://doi.org/10.1508/cytologia.19.97

    Article  Google Scholar 

  12. Plant DNA C-values Database, release 7.1, 2019. https://cvalues.science.kew.org/. Accessed March 1, 2020.

  13. Murat, F., Xu, J.H., Tannier, E., et al., Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution, Genome Res., 2010, vol. 20, pp. 1545—1557. https://doi.org/10.1101/gr.109744.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang, Z., Wang, J., Pan, Y., et al., Reconstruction of evolutionary trajectories of chromosomes unraveled independent genomic repatterning between Triticeae and Brachypodium,BMC Genomics, 2019, vol. 20, p. 180. https://doi.org/10.1186/s12864-019-5566-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vavilov, N.I., Zakon gomologicheskikh ryadov v nasledstvennoi izmenchivosti (The Law of Homological Series in Hereditary Variation), Moscow: Selkhozgiz, 1935.

  16. Abdel-Aal, E.S.M., Young, J.C., and Rabalski, I., Anthocyanin composition in black, blue, pink, purple, and red cereal grains, J. Agric. Food Chem., 2006, vol. 54, no. 13, pp. 4696—4704. https://doi.org/10.1021/jf0606609

    Article  CAS  Google Scholar 

  17. Grotewold, E., The Science of Flavonoids, New York: Springer-Verlag, 2006. https://doi.org/10.1007/978-0-387-28822-2

    Book  Google Scholar 

  18. Lepiniec, L., Debeaujon, I., Routaboul, J.M., et al., Genetics and biochemistry of seed flavonoids, Annu. Rev. Plant Biol., 2006, vol. 57, pp. 405—430. https://doi.org/10.1146/annurev.arplant.57.032905.10-5252

    Article  CAS  PubMed  Google Scholar 

  19. Landi, M., Tattini, M., and Gould, K.S., Multiple functional roles of anthocyanins in plant—environment interactions, Environ. Exp. Bot., 2015, vol. 119, pp. 4—17. https://doi.org/10.1016/j.envexpbot.2015.05.012

    Article  CAS  Google Scholar 

  20. Gould, K.S., Nature’s Swiss army knife: the diverse protective roles of anthocyanins in leaves, J. Biomed. Biotechnol., 2004, vol. 2004, no. 5, pp. 314—320. https://doi.org/10.1155/S1110724304406147

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lee, D.W. and Gould, K.S., Why leaves turn red: pigments called anthocyanins probably protect leaves from light damage by direct shielding and by scavenging free radicals, Am. Sci., 2002, vol. 90, no. 6, pp. 524—531.

    Article  Google Scholar 

  22. Polonskiy, V., Loskutov, I., and Sumina, A., Biological role and health benefits of antioxidant compounds in cereals, Biol. Commun., 2020, vol. 65, no. 1, pp. 53—67. https://doi.org/10.21638/spbu03.2020.105

    Article  Google Scholar 

  23. Sánchez-Moreiras, A.M., Weiss, O., and Roger, M.R., Allelopathic evidence in the Poaceae, Bot. Rev., 2004, vol. 69, no. 3, pp. 300—319. https://doi.org/10.1663/0006-8101(2003)069[0300:AE-ITP]2.0.CO;2

    Article  Google Scholar 

  24. Nemzer, B., Lin, Y., and Huang, D., Antioxidants in sprouts of grains,in Sprouted Grains, Elsevier, 2019, pp. 55—68. https://doi.org/10.1016/B978-0-12-811525-1.00003-8

    Book  Google Scholar 

  25. Khoo, H.E., Azlan, A., Tang, S.T., et al., Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits, Food Nutr. Res., 2017, vol. 61, no. 1, p. 1361779. https://doi.org/10.1080/16546628.2017.1361779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Abdel-Aal, E.S.M., Hucl, P., and Rabalski, I., Compositional and antioxidant properties of anthocyanin-rich products prepared from purple wheat, Food Chem., 2018, vol. 254, pp. 13—19. https://doi.org/10.1016/j.foodchem.2018.01.170

    Article  CAS  PubMed  Google Scholar 

  27. Shipp, J. and Abdel-Aal, E. Food applications and physiological effects of anthocyanins as functional food ingredients, Open Food Sci. J., 2010, vol. 4, pp. 7—22. https://doi.org/10.2174/1874256401004010007

    Article  CAS  Google Scholar 

  28. Yoshinaga, K. and Yakahashi, K.Y.K., Liquor with pigments of red rice, J. Brew. Soc. Jpn., 1986, vol. 81, pp. 337—342.

    Article  CAS  Google Scholar 

  29. Yang, Z. and Zhai, W., Identification and antioxidant activity of anthocyanins extracted from the seed and cob of purple corn (Zea mays L.), Innov. Food Sci. Emerg. Technol., 2010, vol. 11, no. 1, pp. 169—176. https://doi.org/10.1016/j.ifset.2009.08.012

    Article  CAS  Google Scholar 

  30. Garg, M., Chawla, M., Chunduri, V., et al., Transfer of grain colors to elite wheat cultivars and their characterization, J. Cereal Sci., 2016, vol. 71, pp. 138—144. https://doi.org/10.1016/j.jcs.2016.08.004

    Article  Google Scholar 

  31. Khlestkina, E.K., Shoeva, O.Y., Gordeeva, E.I., et al., Anthocyanins in wheat grain: genetic control, health benefit and bread-making quality, Curr. Challenges Plant Genet., Genomics, Bioinf.,Biotechnol., 2019, vol. 24, pp. 15—18. https://doi.org/10.18699/ICG-PlantGen2019-02

    Article  Google Scholar 

  32. Usenko, N.I., Khlestkina, E.K., Asavasanti, S., et al., Possibilities of enriching food products with anthocyanins by using new forms of cereals, Foods Raw Mater., 2018, vol. 6, no. 1, pp. 128—135. https://doi.org/10.21603/2308-4057-2018-1-128-135

    Article  CAS  Google Scholar 

  33. Zong, Y., Xi, X., Li, S., et al., Allelic variation and transcriptional isoforms of wheat TaMYC1 gene regulating anthocyanin synthesis in pericarp, Front. Plant Sci., 2017, vol. 8, pp. 1—12. https://doi.org/10.3389/fpls.2017.01645

    Article  Google Scholar 

  34. Gordeeva, E.I., Shoeva, O.Y., and Khlestkina, E.K., Marker-assisted development of bread wheat near-isogenic lines carrying various combinations of purple pericarp (Pp) alleles, Euphytica, 2014, no. 203, pp. 469—476. https://doi.org/10.1007/s10681-014-1317-8

  35. Khlestkina, E.K., Usenko, N.I., Gordeeva, E.I., et al., Evaluation of wheat products with high flavonoid content: justification of importance of marker-assisted development and production of flavonoid-rich wheat cultivars, Vavilovskii Zh. Genet. Sel., 2017, vol. 21, no. 5, pp. 545—553. https://doi.org/10.18699/VJ17.25-o

    Article  Google Scholar 

  36. Gordeeva, E.I., Glagoleva, A.Y., Kukoeva, T.V., et al., Purple-grained barley (Hordeum vulgare L.): marker-assisted development of NILs for investigating peculiarities of the anthocyanin biosynthesis regulatory network, BMC Plant Biol., 2019, vol. 19, no. 52. https://doi.org/10.1186/s12870-019-1638-9

  37. Gordeeva, E., Badaeva, E., Yudina, R., et al., Marker-assisted development of a blue-grained substitution line carrying the Thinopyrum ponticum chromosome 4Th(4D) in the spring bread wheat Saratovskaya 29 background, Agronomy, 2019, vol. 9, no. 11. https://doi.org/10.3390/agronomy9110723

  38. Syed Jaafar, S.N., Baron, J., Siebenhandl-Ehn, S., et al., Increased anthocyanin content in purple pericarp × blue aleurone wheat crosses, Plant Breed., 2013, vol. 132, no. 6, pp. 546—552. https://doi.org/10.1111/pbr.12090

    Article  CAS  Google Scholar 

  39. Knievel, D.C., Abdel-Aal, E.S.M., Rabalski, I., et al., Grain color development and the inheritance of high anthocyanin blue aleurone and purple pericarp in spring wheat (Triticum aestivum L.), J. Cereal Sci., 2009, vol. 50, no. 1, pp. 113—120. https://doi.org/10.1016/j.jcs.2009.03.007

    Article  CAS  Google Scholar 

  40. Winkel-Shirley, B., Flavonoid biosynthesis: a colorful model for genetics, biochemistry, cell biology, and biotechnology, Plant Physiol., 2001, vol. 126, no. 2, pp. 485—493. https://doi.org/10.1104/pp.126.2.485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Adzhieva, V.F., Babak, O.G., Shoeva, O.Y., et al., Molecular genetic mechanisms of the development of fruit and seed coloration in plants, Russ. J. Genet.,Appl. Res., 2016, vol. 6, no. 5, pp. 537—552. https://doi.org/10.1134/S2079059716050026

    Article  CAS  Google Scholar 

  42. Kushnak, G.D., Utilizing Linkages of Genetic Male Sterile and Aleurone Color Genes in Hybrid Barley (Hordeum vulgare L.) Systems, Montana State Univ., 1974.

    Google Scholar 

  43. Khlestkina, E.K., Genes determining the coloration of different organs in wheat, Russ. J. Genet.,Appl. Res., 2013, vol. 3, no. 1, pp. 54—65. https://doi.org/10.1134/S2079059713010085

    Article  Google Scholar 

  44. Ficco, D.B.M., De Simone, V., Colecchia, S.A., et al., Genetic variability in anthocyanin composition and nutritional properties of blue, purple, and red bread (Triticum aestivum L.) and durum (Triticum turgidum L. ssp. turgidum convar. durum) wheats, J. Agr. Food Chem., 2014, vol. 62, no. 34, pp. 8686—8695. https://doi.org/10.1021/jf5003683

    Article  CAS  Google Scholar 

  45. Sytar, O., Bośko, pp., Živčák, M., et al., Bioactive phytochemicals and antioxidant properties of the grains and sprouts of colored wheat genotypes, Molecules, 2018, vol. 23, no. 9, p. 2282. https://doi.org/10.3390/molecules23092282

    Article  CAS  PubMed Central  Google Scholar 

  46. Dangles, O. and Fenger, J.A., The chemical reactivity of anthocyanins and its consequences in food science and nutrition, Molecules, 2018, vol. 23, no. 8, p. 1970. https://doi.org/10.3390/molecules23081970

    Article  CAS  PubMed Central  Google Scholar 

  47. Goufo, P. and Trindade, H., Rice antioxidants: phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid, Food Sci. Nutr., 2014, vol. 2, no. 2, pp. 75—104. https://doi.org/10.1002/fsn3.86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Voylokov, A.V., Lykholay, A.N., and Smirnov, V.G., Genetic control of anthocyanin coloration in rye, Russ. J. Genet.,Appl. Res., 2015, vol. 5, no. 3, pp. 262—267. https://doi.org/10.1134/S207905971503020X

    Article  CAS  Google Scholar 

  49. Pihlava, J.M., Hellström, J., Kurtelius, T., and Mattila, P., Flavonoids, anthocyanins, phenolamides, benzoxazinoids, lignans and alkylresorcinols in rye (Secale cereale) and some rye products, J. Cereal Sci., 2018, vol. 79, pp. 183—192. https://doi.org/10.1016/j.jcs.2017.09.009

    Article  CAS  Google Scholar 

  50. Dedio, W., Hill, R.D., and Evans, L.E., Anthocyanins in the pericarp and coleoptiles of purple wheat, Can. J. Plant Sci., 1972, vol. 52, no. 6, pp. 981—983.

    Article  CAS  Google Scholar 

  51. Zykin, P.A., Andreeva, E.A., Lykholay, A.N., et al., Anthocyanin composition and content in rye plants with different grain color, Molecules, 2018, vol. 23, no. 4, p. 948. https://doi.org/10.3390/molecules23040948

    Article  CAS  PubMed Central  Google Scholar 

  52. Petroni, K., Pilu, R., and Tonelli, C., Anthocyanins in corn: a wealth of genes for human health, Planta, 2014, vol. 240, no. 5, pp. 901—911. https://doi.org/10.1007/s00425-014-2131-1

    Article  CAS  PubMed  Google Scholar 

  53. Awika, J.M., Rooney, L.W., and Waniska, R.D., Anthocyanins from black sorghum and their antioxidant properties, Food Chem., 2005, vol. 90, nos. 1—2, pp. 293—301. https://doi.org/10.1016/j.foodchem.2004.03.058

    Article  CAS  Google Scholar 

  54. Su, X., Rhodes, D.H., Xu, J., et al., Phenotypic diversity of anthocyanins in sorghum accessions with various pericarp pigments, J. Nutr. Food Sci., 2017, vol. 7, no. 4. https://doi.org/10.4172/2155-9600.1000610

  55. Kim, M.-K., Kim, H., Koh, K., et al., Identification and quantification of anthocyanin pigments in colored rice, Nutr. Res. Pract., 2008, vol. 2, no. 1, pp. 46—49. https://doi.org/10.4162/nrp.2008.2.1.46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dedio, W., Hill, R.D., and Evans, L.E., Anthocyanins in the pericarp and coleoptiles of purple-seeded rye, Can. J. Plant Sci., 1972, vol. 52, no. 6, pp. 981—983.

    Article  CAS  Google Scholar 

  57. Mullick, D.B., Faris, D.G., Brink, V.C., and Acheson, R.M., Anthocyanins and anthocyanidins of the barley pericarp and aleurone tissues, Can. J. Plant Sci., 1958, vol. 38, no. 4, pp. 445—456. https://doi.org/10.4141/cjps58-071

    Article  CAS  Google Scholar 

  58. Zhu, F., Anthocyanins in cereals: composition and health effects, Food Res. Int., 2018, vol. 109, pp. 232—249. https://doi.org/10.1016/j.foodres.2018.04.015

    Article  CAS  PubMed  Google Scholar 

  59. Salinas Moreno, Y., Sánchez, G.S., Hernández, D.R., and Lobato, N.R., Characterization of anthocyanin extracts from maize kernels, J. Chromatogr. Sci., 2005, vol. 43, no. 9, pp. 483—487. https://doi.org/10.1093/chromsci/43.9.483

    Article  Google Scholar 

  60. Shoeva, O.Yu., Strygina, K.V., and Khlestkina, E.K., Genes determining the synthesis of flavonoid and melanin pigments in barley, Vavilovskii Zh. Genet. Sel., 2018, vol. 22, no. 3, pp. 333—342. https://doi.org/10.18699/VJ18.369

    Article  Google Scholar 

  61. Jackman, R.L. and Smith, J.L., Anthocyanins and betalains, Natural Food Colorants, Hendry, G.A.F. and Houghton, J.D., Eds., Boston, MA: Springer-Verlag, 1996, pp. 244—309. https://doi.org/10.1007/978-1-4615-2155-6_8

    Book  Google Scholar 

  62. Wu, X. and Prior, R.L., Identification and characterization of anthocyanins by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry in common foods in the United States: vegetables, nuts, and grains, J. Agric. Food Chem., 2005, vol. 53, no. 8, pp. 3101—3113. https://doi.org/10.1021/jf0478861

    Article  CAS  PubMed  Google Scholar 

  63. Fossen, T., Slimestad, R., and Andersen, O.M., Anthocyanins from maize (Zea mays) and reed canarygrass (Phalaris arundinacea), J. Agric. Food Chem., 2001, vol. 49, no. 5, pp. 2318—2321. https://doi.org/10.1021/jf001399d

    Article  CAS  PubMed  Google Scholar 

  64. Abdel-Aal, E.S.M. and Hucl, P., Composition and stability of anthocyanins in blue-grained wheat, J. Agric. Food Chem., 2003, vol. 51, no. 8, pp. 2174—2180. https://doi.org/10.1021/jf021043x

    Article  CAS  Google Scholar 

  65. Strygina, K.V., Regulyatsiya tkanespetsificheskoi ekspressii genov biosinteza flavonoidov u vidov triby Triticeae (Regulation of Tissue-Specific Expression of Genes Involved in Flavonoid Biosynthesis in Species of the Tribe Triticeae), Novosibirsk: Institut Tsitologii i Genetiki Sibirskogo Otdeleniya Rossiiskoi Akademii Nauk, 2018.

  66. Dwivedi, S.L., Upadhyaya, H.D., Chung, I.M., et al., Exploiting phenylpropanoid derivatives to enhance the nutraceutical values of cereals and legumes, Front. Plant Sci., 2016, vol. 7, p. 763. https://doi.org/10.3389/fpls.2016.00763

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ford, R.H., Inheritance of kernel color in corn: explanations and investigations, Am. Biol. Teach., 2000. 2000, vol. 62, no. 3, pp. 181—188. https://doi.org/10.2307/4450870

  68. Rhoades, M.M., The effect of varying gene dosage on aleurone colour in maize, J. Genet., 1936, vol. 33, no. 3, pp. 347—354. https://doi.org/10.1007/BF02982890

    Article  Google Scholar 

  69. Li, T., Zhang, W., Yang, H., et al., Comparative transcriptome analysis reveals differentially expressed genes related to the tissue-specific accumulation of anthocyanins in pericarp and aleurone layer for maize, Sci. Rep., 2019, vol. 9, no. 1, p. 2485. https://doi.org/10.1038/s41598-018-37697-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chandler, V.L., Radicella, J.P., Robbins, T.P., et al., Two regulatory genes of the maize anthocyanin pathway are homologous: isolation of B utilizing R genomic sequences, Plant Cell, 1989, vol. 1, no. 12, pp. 1175—1183. https://doi.org/10.1105/tpc.1.12.1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dooner, H.K., Robbins, T.P., and Jorgensen, R.A., Genetic and developmental control of anthocyanin biosynthesis, Annu. Rev. Genet., 1991, vol. 25, pp. 173—199.

    Article  CAS  Google Scholar 

  72. Pilu, R., Piazza, P., Petroni, K., et al., Pl-Bol3, a complex allele of the anthocyanin regulatory Pl1 locus that arose in a naturally occurring maize population, Plant J., 2003, vol. 36, no. 4, pp. 510—521. https://doi.org/10.1046/j.1365-313X.2003.01898.x

    Article  CAS  PubMed  Google Scholar 

  73. Carey, C.C., Mutations in the pale aleurone color1 regulatory gene of the Zea mays anthocyanin pathway have distinct phenotypes relative to the functionally similar TRANSPARENT TESTA GLABRA1 gene in Arabidopsis thaliana,Plant Cell, 2004, vol. 16, no. 2, pp. 450—464. https://doi.org/10.1105/tpc.018796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Selinger, D.A. and Chandler, V.L., A mutation in the pale aleurone color1 gene identifies a novel regulator of the maize anthocyanin pathway, Plant Cell, 1999, vol. 11, no. 1, pp. 5—14. https://doi.org/10.1105/tpc.11.1.5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Maeda, H., Yamaguchi, T., Omoteno, M., et al., Genetic dissection of black grain rice by the development of a near isogenic line, Breed. Sci., 2014, vol. 64, no. 2, pp. 134—141. https://doi.org/10.1270/jsbbs.64.134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shih, C.H., Chu, H., Tang, L.K., et al., Functional characterization of key structural genes in rice flavonoid biosynthesis, Planta, 2008, vol. 228, pp. 1043—1054. https://doi.org/10.1007/s00425-008-0806-1

    Article  CAS  PubMed  Google Scholar 

  77. Oikawa, T., Maeda, H., Oguchi, T., et al., The birth of a black rice gene and its local spread by introgression, Plant Cell, 2015, vol. 27, no. 9, pp. 2401—2414. https://doi.org/10.1105/tpc.15.00310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rahman, M.M., Lee, K.E., and Kang, S.G., Allelic gene interaction and anthocyanin biosynthesis of purple pericarp trait for yield improvement in black rice, J. Life Sci., 2015, vol. 26, no. 6, pp. 727—736. https://doi.org/10.5352/JLS.2016.26.6.727

    Article  Google Scholar 

  79. Sun, X., Zhang, Z., Chen, C., et al., The C-S-A gene system regulates hull pigmentation and reveals evolution of anthocyanin biosynthesis pathway in rice, J. Exp. Bot., 2018, vol. 69, no. 7, pp. 1485—1498. https://doi.org/10.1093/jxb/ery001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cockram, J., White, J., Zuluaga, D.L., et al., Genome-wide association mapping to candidate polymorphism resolution in the unsequenced barley genome, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, no. 50, pp. 21611—21616. https://doi.org/10.1073/pnas.1010179107

    Article  PubMed  PubMed Central  Google Scholar 

  81. Shoeva, O.Y., Mock, H.P., Kukoeva, T.V., et al., Regulation of the flavonoid biosynthesis pathway genes in purple and black grains of Hordeum vulgare,PLoS One, 2016, vol. 11, no. 10. e0163782. https://doi.org/10.1371/journal.pone.0163782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Himi, E. and Taketa, S., Isolation of candidate genes for the barley Ant1 and wheat Rc genes controlling anthocyanin pigmentation in different vegetative tissues, Mol. Genet. Genomics, 2015, vol. 290, pp. 1287—1298. https://doi.org/10.1007/s00438-015-0991-0

    Article  CAS  PubMed  Google Scholar 

  83. Shoeva, O., Gordeeva, E., and Khlestkina, E., The regulation of anthocyanin synthesis in the wheat pericarp, Molecules, 2014, vol. 19, no. 12, pp. 20266—20279. https://doi.org/10.3390/molecules191220266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jiang, W., Liu, T., Nan, W., et al., Two transcription factors TaPpm1 and TaPpb1 co-regulate anthocyanin biosynthesis in purple pericarps of wheat, J. Exp. Bot., 2018, vol. 69, no. 10, pp. 2555—2567. https://doi.org/10.1093/jxb/ery101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Strygina, K.V., Börner, A., and Khlestkina, E.K., Identification and characterization of regulatory network components for anthocyanin synthesis in barley aleurone, BMC Plant Biol., 2017, vol. 17, p. 184. https://doi.org/10.1186/s12870-017-1122-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Strygina, K.V. and Khlestkina, E.K., Structural and functional organization and evolution of the WD40 genes involved in the regulation of flavonoid biosynthesis in the Triticeae tribe, Russ. J. Genet., 2019, vol. 55, no. 11, pp. 1398—1405. https://doi.org/10.1134/S1022795419110152

    Article  CAS  Google Scholar 

  87. Lykholay, A.N., Vladimirov, I.A., Andreeva, E.A., et al., Genetics of anthocyaninless rye, Russ. J. Genet., 2014, vol. 50, pp. 1102—1106. https://doi.org/10.1134/S1022795414100081

    Article  CAS  Google Scholar 

  88. Fedorov, V.S., Genetics of rye (Secale cereale L.): inheritance of anthocyanin coloration, waxy bloom, and spike branching in rye, in Issledovaniya po genetike (Research in Genetics), 1964, vol. 2, pp. 100—110.

    Google Scholar 

  89. Dumon, A.G., Contribution à la génétique et à lamélioration du seigle (Secale cereale L.), Agricultura (Louvain), 1947, vol. 45, pp. 213—223.

    Google Scholar 

  90. Fedorov, V.S., Genetics of rye (Secale cereale L.): xenia, in Issledovaniya po genetike (Research in Genetics), 1961, vol. 1, pp. 116—121.

    Google Scholar 

  91. Watkins, R. and White, W.J., The inheritance of anthocyanins in rye (Secale cereale L), Can. J. Genet. Cytol., 1964, vol. 6, no. 4, pp. 403—410. https://doi.org/10.1139/g64-051

    Article  Google Scholar 

  92. Voilokov, A.V., Sosnikhina, S.P., Tikhenko, N.D., et al., Peterhof collection of rye and its use in genetic studies, Ekol. Genet., 2018, vol. 16, no. 2, pp. 40—49. https://doi.org/10.17816/ecogen16240-49

    Article  Google Scholar 

  93. Finch, R.A. and Simpson, E., New colours and complementary colour genes in barley, Z. Pflanzenzücht., 1978, vol. 81, no. 1, pp. 40—53.

    Google Scholar 

  94. Strygina, K.V. and Khlestkina, E.K., Structural and functional divergence of the Mpc1 genes in wheat and barley, BMC Evol. Biol., 2019, vol. 19, p. 45. https://doi.org/10.1186/s12862-019-1378-3

    Article  PubMed  PubMed Central  Google Scholar 

  95. Vikhorev, A.V., Strygina, K.V., and Khlestkina, E.K., Duplicated flavonoid 3'-hydroxylase and flavonoid 3', 5'-hydroxylase genes in barley genome, Peer J., 2019, vol. 7. e6266. https://doi.org/10.7717/peerj.6266

    Article  CAS  PubMed  Google Scholar 

  96. Zeven, A.C., Wheats with purple and blue grains: a review, Euphytica, 1991, vol. 56, pp. 243—258. https://doi.org/10.1007/BF00042371

    Article  Google Scholar 

  97. Liu, X., Feng, Z., Liang, D., et al., Development, identification, and characterization of blue-grained wheat-Triticum boeoticum substitution lines, J. Appl. Genet., 2020, vol. 61, pp. 169—177. https://doi.org/10.1007/s13353-020-00553-9

    Article  CAS  PubMed  Google Scholar 

  98. Ficco, D.B.M., Mastrangelo, A.M., Trono, D., et al., The colours of durum wheat: a review, Crop Pasture Sci., 2014, vol. 65, pp. 1—15. https://doi.org/10.1071/CP13293

    Article  Google Scholar 

  99. Zhao, S., Xi, X., Zong, Y., et al., Overexpression of THMYC4E enhances anthocyanin biosynthesis in common wheat, Int. J. Mol. Sci., 2020, vol. 21, no. 1, p. 137. https://doi.org/10.3390/ijms21010137

    Article  CAS  Google Scholar 

  100. Li, N., Li, S., Zhang, K., et al., ThMYC4E, candidate blue aleurone 1 gene controlling the associated trait in Triticum aestivum,PLoS One, 2017, vol. 12, no. 7. e0181116. https://doi.org/10.1371/journal.pone.0181116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Liu, L., Luo, Q., Li, H., et al., Physical mapping of the blue-grained gene from Thinopyrum ponticum chromosome 4Ag and development of blue-grain-related molecular markers and a FISH probe based on SLAF-seq technology, Theor. Appl. Genet., 2018, vol. 131, no. 11, pp. 2359—2370. https://doi.org/10.1007/s00122-018-3158-7

    Article  PubMed  Google Scholar 

  102. Lachman, J., Martinek, P., Kotíková, Z., et al., Genetics and chemistry of pigments in wheat grain—a review, J. Cereal Sci., 2017, vol. 74, pp. 145—154. https://doi.org/10.1016/j.jcs.2017.02.007

    Article  CAS  Google Scholar 

  103. Li, J., Lang, T., Li, B., et al., Introduction of Thinopyrum intermedium ssp. trichophorum chromosomes to wheat by trigeneric hybridization involving Triticum, Secale and Thinopyrum genera, Planta, 2017, vol. 245, no. 6, pp. 1121—1135. https://doi.org/10.1007/s00425-017-2669-9

    Article  CAS  PubMed  Google Scholar 

  104. Strygina, K.V. and Khlestkina, E.K., MYC gene family in cereals: transformations during evolution of hexaploid bread wheat and its relatives, Mol. Biol., 2017, vol. 51, pp. 674—680. https://doi.org/10.1134/S0026893317050181

    Article  CAS  Google Scholar 

  105. Strygina, K.V. and Khlestkina, E.K., Myc-like transcriptional factors in wheat: Structural and functional organization of the subfamily I members, BMC Plant Biol., 2019, vol. 19. p. 50. https://doi.org/10.1186/s12870-019-1639-8

    Article  PubMed  PubMed Central  Google Scholar 

  106. Jia, Y., Selva, C., Zhang, Y., et al., Uncovering the evolutionary origin of blue anthocyanins in cereal grains, Plant J., 2019, vol. 101, no. 5, pp. 1057—1074. https://doi.org/10.1111/tpj.14557

    Article  CAS  Google Scholar 

  107. Cone, K.C., Cocciolone, S.M., Burr, F.A., et al., Maize anthocyanin regulatory gene pl is a duplicate of c1 that functions in the plant, Plant Cell, 1993, vol. 5, no. 12, pp. 1795—1805. https://doi.org/10.1105/tpc.5.12.1795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Sharma, M., Cortes-Cruz, M., Ahern, K.R., et al., Identification of the Pr1 gene product completes the anthocyanin biosynthesis pathway of maize, Genetics, 2011, vol. 188, no. 1, pp. 69—79. https://doi.org/10.1534/genetics.110.126136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. De Bruyne, T., Pieters, L., Deelstra, H., et al., Condensed vegetable tannins: biodiversity in structure and biological activities, Biochem. Syst. Ecol., 1999, vol. 27, no. 4, pp. 445—459. https://doi.org/10.1016/S0305-1978(98)00101-X

    Article  CAS  Google Scholar 

  110. He, F., Pan, Q.H., Shi, Y., et al., Biosynthesis and genetic regulation of proanthocyanidins in plants, Molecules, 2008, vol. 13, no. 10, pp. 2674—2703. https://doi.org/10.3390/molecules13102674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Rauf, A., Imran, M., Abu-Izneid, T., et al., Proanthocyanidins: a comprehensive review, Biomed. Pharmacother., 2019, vol. 116, p. 108999. https://doi.org/10.1016/j.biopha.2019.108999

    Article  CAS  PubMed  Google Scholar 

  112. Gunaratne, A., Wu, K., Li, D., et al., Antioxidant activity and nutritional quality of traditional red-grained rice varieties containing proanthocyanidins, Food Chem., 2013, vol. 138, no. 2—3, pp. 1153—1161. https://doi.org/10.1016/j.foodchem.2012.11.129

    Article  CAS  PubMed  Google Scholar 

  113. Marles, M.A.S., Ray, H., and Gruber, M.Y., New perspectives on proanthocyanidin biochemistry and molecular regulation, Phytochemistry, 2003, vol. 64, no. 2, pp. 367—383. https://doi.org/10.1016/S0031-9422(03)00377-7

    Article  CAS  PubMed  Google Scholar 

  114. Gonzalez, A., Zhao, M., Leavitt, J.M., et al., Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings, Plant J., 2008, vol. 53, no. 5, pp. 814—827. https://doi.org/10.1111/j.1365-313X.2007.03373.x

    Article  CAS  PubMed  Google Scholar 

  115. Zhu, F., Proanthocyanidins in cereals and pseudocereals, Crit. Rev. Food Sci. Nutr., 2019, vol. 59, no. 10, pp. 1521—1533. https://doi.org/10.1080/10408398.2017.1418284

    Article  CAS  PubMed  Google Scholar 

  116. Aastrup, S., Outtrup, H., and Erdal, K., Location of the proanthocyanidins in the barley grain, Carlsberg Res. Commun., 1984, vol. 49, pp. 105—109. https://doi.org/10.1007/BF02913969

    Article  CAS  Google Scholar 

  117. Fraser, K., Collette, V., and Hancock, K.R., Characterization of proanthocyanidins from seeds of perennial ryegrass (Lolium perenne L.) and tall fescue (Festuca arundinacea) by liquid chromatography-mass spectrometry, J. Agric. Food Chem., 2016, vol. 64, no. 35, pp. 6676—6684. https://doi.org/10.1021/acs.jafc.6b02563

    Article  CAS  PubMed  Google Scholar 

  118. Mccallum, J.A. and Walker, J.R.L., Proanthocyanidins in wheat bran, Cereal Chem., 1990, vol. 67, no. 3, pp. 282—285.

    CAS  Google Scholar 

  119. Dykes, L. and Rooney, L.W., Phenolic compounds in cereal grains and their health benefits, Cereal Food World, 2007, vol. 52, no. 3, pp. 105—111. https://doi.org/10.1094/CFW-52-3-0105

    Article  CAS  Google Scholar 

  120. Gu, L., Kelm, M.A., Hammerstone, J.F., et al., Screening of foods containing proanthocyanidins and their structural characterization using LC-MS/MS and thiolytic degradation, J. Agric. Food Chem., 2003, vol. 51, no. 25, pp. 7513—7521. https://doi.org/10.1021/jf034815d

    Article  CAS  PubMed  Google Scholar 

  121. Kristiansen, K.N., Biosynthesis of proanthocyanidins in barley: genetic control of the conversion of dihydroquercetin to catechin and procyanidins, Carlsberg Res. Commun., 1984, vol. 49, no. 5, p. 503. https://doi.org/10.1007/BF02907552

    Article  CAS  Google Scholar 

  122. Reddy, V.S., Dash, S., and Reddy, A.R., Anthocyanin pathway in rice (Oryza sativa L.): identification of a mutant showing dominant inhibition of anthocyanins in leaf and accumulation of proanthocyanidins in pericarp, Theor. Appl. Genet., 1995, vol. 91, pp. 301—312. https://doi.org/10.1007/BF00220892

    Article  CAS  PubMed  Google Scholar 

  123. Limtrakul (Dejkriengkraikul), P., Semmarath, W., and Mapoung, S., Anthocyanins and proanthocyanidins in natural pigmented rice and their bioactivities, in Phytochemicals in Human Health, 2019. https://doi.org/10.5772/intechopen.86962

  124. Hosoda, K., Sasahara, H., Matsushita, K., et al., Anthocyanin and proanthocyanidin contents, antioxidant activity, and in situ degradability of black and red rice grains, Asian-Australas. J. Anim. Sci., 2018, vol. 31, no. 8, pp. 1213—1220. https://doi.org/10.5713/ajas.17.0655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Furukawa, T., Maekawa, M., Oki, T., et al., The Rc and Rd genes are involved in proanthocyanidin synthesis in rice pericarp, Plant J., 2007, vol. 49, no. 1, pp. 91—102. https://doi.org/10.1111/j.1365-313X.2006.02958.x

    Article  CAS  PubMed  Google Scholar 

  126. Sweeney, M.T., Thomson, M.J., Pfeil, B.E., et al., Caught red-handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice, Plant Cell, 2006, vol. 18, pp. 283—294. https://doi.org/10.1105/tpc.105.038430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Rahman, M.M., Naher, M.S., Sikdar, M.S.I., et al., Genetic characterization of red pericarp trait in rice, JST, 2015, vol. 13, pp. 118—121.

    Google Scholar 

  128. Kohyama, N., Chono, M., Nakagawa, H., et al., Flavonoid compounds related to seed coat color of wheat, Biosci. Biotech. Biochem., 2017, vol. 81, no. 11, pp. 2112—2118. https://doi.org/10.1080/09168451.2017.1373589

    Article  CAS  Google Scholar 

  129. Himi, E. and Noda, K., Red grain colour gene (R) of wheat is a Myb-type transcription factor, Euphytica, 2005, vol. 143, pp. 239—242. https://doi.org/10.1007/s10681-005-7854-4

    Article  CAS  Google Scholar 

  130. Himi, E. and Taketa, S., Promising target locus for attaining anthocyanin/proanthocyanidin-free plants without pleiotropic reduction of grain dormancy, Genome, 2015, vol. 58, pp. 43—53. https://doi.org/10.1139/gen-2014-0189

    Article  CAS  PubMed  Google Scholar 

  131. Jende-Strid, B. and Lundqvist, U., Diallelic tests of anthocyanin-deficient mutants, Barley Genet. Newslett., 1978, no. 8, pp. 57—59.

  132. Himi, E., Maekawa, M., Miura, H., and Noda, K., Development of PCR markers for Tamyb10 related to R-1, red grain color gene in wheat, Theor. Appl. Genet., 2011, vol. 122, no. 8, pp. 1561—1576. https://doi.org/10.1007/s00122-011-1555-2

    Article  CAS  PubMed  Google Scholar 

  133. Dykes, L. and Rooney, L.W., Sorghum and millet phenols and antioxidants, J. Cereal Sci., 2006, vol. 44, no. 3, pp. 236—251. https://doi.org/10.1016/j.jcs.2006.06.007

    Article  CAS  Google Scholar 

  134. Hahn, D.H., Rooney, L.W., and Earp, C.F., Tannins and phenols of sorghum, Cereal Food World, 1984, vol. 29, no. 12, pp. 776—779.

    CAS  Google Scholar 

  135. Rhodes, D.H., Hoffmann, L., Jr., Rooney, W.L., et al., Genome-wide association study of grain polyphenol concentrations in global sorghum (Sorghum bicolor (L.) Moench) germplasm, J. Agric. Food Chem., 2014, vol. 62, no. 45, pp. 10916—10927. https://doi.org/10.1021/jf503651t

    Article  CAS  PubMed  Google Scholar 

  136. Doggett, H., Sorghum, Harlow: Longman, 1988, 2nd ed. https://doi.org/10.1017/S002185960008477X

    Book  Google Scholar 

  137. Morris, G.P., Rhodes, D.H., Brenton, Z., et al., Dissecting genome-wide association signals for loss-of-function phenotypes in sorghum flavonoid pigmentation traits, G3, 2013, vol. 3, no. 11, pp. 2085—2094. https://doi.org/10.1534/g3.113.008417

    Article  CAS  PubMed  Google Scholar 

  138. Boddu, J., Svabek, C., Ibraheem, F., et al., Characterization of a deletion allele of a sorghum Myb gene yellow seed1 showing loss of 3-deoxyflavonoids, Plant Sci., 2005, vol. 169, no. 3, pp. 542—552. https://doi.org/10.1016/j.plantsci.2005.05.007

    Article  CAS  Google Scholar 

  139. Chopra, S., Gevens, A., Svabek, C., et al., Excision of the Candystripe1 transposon from a hyper-mutable Y1-cs allele shows that the sorghum Y1 gene controls the biosynthesis of both 3-deoxyanthocyanidin phytoalexins and phlobaphene pigments, Physiol. Mol. Plant Pathol., 2002, vol. 60, no. 6, pp. 321—330. https://doi.org/10.1006/pmpp.2002.0411

    Article  CAS  Google Scholar 

  140. Wu, Y., Li, X., Xiang, W., et al., Presence of tannins in sorghum grains is conditioned by different natural alleles of Tannin1, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 26, pp. 10281—10286.https://doi.org/10.1073/pnas.1201700109

  141. Kawahigashi, H., Nonaka, E., Mizuno, H., et al., Classification of genotypes of leaf phenotype (P/tan) and seed phenotype (Y1 and Tan1) in tan sorghum (Sorghum bicolor), Plant Breed., 2016, vol. 135, no. 6, pp. 683—690. https://doi.org/10.1111/pbr.12426

    Article  CAS  Google Scholar 

  142. Habyarimana, E., Dall’Agata, M., De Franceschi, P., et al., Genome-wide association mapping of total antioxidant capacity, phenols, tannins, and flavonoids in a panel of Sorghum bicolor and S. bicolor × S. halepense populations using multi-locus models, PLoS One, 2019, vol. 14, no. 12. e0225979. https://doi.org/10.1371/journal.pone.0225979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Fossen, T., Slimestad, R., Øvstedal, D.O., et al., Anthocyanins of grasses, Biochem. Syst. Ecol., 2002, vol. 30, no. 9, pp. 855—864. https://doi.org/10.1016/S0305-1978(02)00028-5

    Article  CAS  Google Scholar 

  144. Xiong, Y., Zhang, P., Warner, R.D., et al., 3-Deoxyanthocyanidin colorant: nature, health, synthesis, and food applications, Compr. Rev. Food Sci. Food Saf., 2019, vol. 18, no. 5, pp. 1533—1549. https://doi.org/10.1111/1541-4337.12476

    Article  CAS  Google Scholar 

  145. Pale, E., Kouda-Bonafos, M., Nacro, M., et al., 7-O-methylapigeninidin, an anthocyanidin from Sorghum caudatum,Phytochemistry, 1997, vol. 45, no. 5, pp. 1091—1092. https://doi.org/10.1016/S0031-9422(97)00099-X

    Article  CAS  Google Scholar 

  146. Awika, J.M., Rooney, L.W., and Waniska, R.D., Properties of 3-deoxyanthocyanins from sorghum, J. Agric. Food Chem., 2004, vol. 52, no. 14, pp. 4388—4394. https://doi.org/10.1021/jf049653f

    Article  CAS  PubMed  Google Scholar 

  147. Dykes, L., Seitz, L.M., Rooney, W.L., and Rooney, L.W., Flavonoid composition of red sorghum genotypes, Food Chem., 2009, vol. 116, no. 1, pp. 313—317. https://doi.org/10.1016/j.foodchem.2009.02.052

    Article  CAS  Google Scholar 

  148. Winefield, C.S., Lewis, D.H., Swinny, E.E., et al., Investigation of the biosynthesis of 3-deoxyanthocyanins in Sinningia cardinalis,Physiol. Plant., 2005, vol. 124, no. 4, pp. 419—430. https://doi.org/10.1111/j.1399-3054.2005.00531.x

    Article  CAS  Google Scholar 

  149. McMullen, M.D., Snook, M., Lee, E.A., et al., The biological basis of epistasis between quantitative trait loci for flavone and 3-deoxyanthocyanin synthesis in maize (Zea mays L.), Genome, 2001, vol. 44, no. 4, pp. 667—676. https://doi.org/10.1139/g01-061

    Article  CAS  PubMed  Google Scholar 

  150. Zhang, P., Chopra, S., and Peterson, T., A segmental gene duplication generated differentially expressed myb-homologous genes in maize, Plant Cell, 2000, vol. 12, no. 12, pp. 2311—2322. https://doi.org/10.1105/tpc.12.12.2311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ibraheem, F., Gaffoor, I., and Chopra, S., Flavonoid phytoalexin-dependent resistance to anthracnose leaf blight requires a functional yellow seed1 in Sorghum bicolor,Genetics, 2010, vol. 184, no. 4, pp. 915—926. https://doi.org/10.1534/genetics.109.111831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kawahigashi, H., Kasuga, S., Sawada, Y., et al., The sorghum gene for leaf color changes upon wounding (P) encodes a flavanone 4-reductase in the 3-deoxyanthocyanidin biosynthesis pathway, G3, 2016, vol. 6, no. 5, pp. 1439—1447. https://doi.org/10.1534/g3.115.026104

    Article  CAS  PubMed  Google Scholar 

  153. Liu, H., Du, Y., Chu, H., et al., Molecular dissection of the pathogen-inducible 3-deoxyanthocyanidin biosynthesis pathway in sorghum, Plant Cell Physiol., 2010, vol. 51, no. 7, pp. 1173—1185. https://doi.org/10.1093/pcp/pcq080

    Article  CAS  PubMed  Google Scholar 

  154. Shih, C.H., Chu, I.K., Yip, W.K., et al., Differential expression of two flavonoid 3'-hydroxylase cDNAs involved in biosynthesis of anthocyanin pigments and 3-deoxyanthocyanidin phytoalexins in sorghum, Plant Cell Physiol., 2006, vol. 47, no. 10, pp. 1412—1419. https://doi.org/10.1093/pcp/pcl003

    Article  CAS  PubMed  Google Scholar 

  155. Mizuno, H., Yazawa, T., Kasuga, S., et al., Expression level of a flavonoid 3′-hydroxylase gene determines pathogen-induced color variation in sorghum, BMC Res. Notes, 2014, vol. 7, p. 761. https://doi.org/10.1186/1756-0500-7-761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Pilu, R., Cassani, E., Sirizzotti, A., et al., Effect of flavonoid pigments on the accumulation of fumonisin B1 in the maize kernel, J. Appl. Genet., 2011, vol. 52, pp. 145—152. https://doi.org/10.1007/s13353-010-0014-0

    Article  CAS  PubMed  Google Scholar 

  157. Landoni, M., Puglisi, D., Cassani, E., et al., Phlobaphenes modify pericarp thickness in maize and accumulation of the fumonisin mycotoxins, Sci. Rep., 2020, vol. 10, p. 1417. https://doi.org/10.1038/s41598-020-58341-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Sharma, M., Chai, C., Morohashi, K., et al., Expression of flavonoid 3'-hydroxylase is controlled by P1, the regulator of 3-deoxyflavonoid biosynthesis in maize, BMC Plant Biol., 2012, vol. 12, p. 196. https://doi.org/10.1186/1471-2229-12-196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Dong, X., Braun, E.L., and Grotewold, E., Functional conservation of plant secondary metabolic enzymes revealed by complementation of Arabidopsis flavonoid mutants with maize genes, Plant Physiol., 2001, vol. 127, no. 1, pp. 46—57. https://doi.org/10.1104/pp.127.1.46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Grotewold, E., Drummond, B.J., Bowen, B., and Peterson, T., The myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset, Cell, 1994, vol. 76, no. 3, pp. 543—553. https://doi.org/10.1016/0092-8674(94)90117-1

    Article  CAS  PubMed  Google Scholar 

  161. Ferreyra, M.L.F., Rius, S., Emiliani, J., et al., Cloning and characterization of a UV-B-inducible maize flavonol synthase, Plant J., 2010, vol. 62, no. 1, pp. 77—91. https://doi.org/10.1111/j.1365-313X.2010.04133.x

    Article  CAS  Google Scholar 

  162. Grotewold, E., Athma, P., and Peterson, T., Alternatively spliced products of the maize P gene encode proteins with homology to the DNA-binding domain of myb-like transcription factors, Proc. Natl. Acad. Sci. U.S.A., 1991, vol. 88, no. 11, pp. 4587—4591. https://doi.org/10.1073/pnas.88.11.4587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Chopra, S., Cocciolone, S.M., Bushman, S., et al., The maize unstable factor for orange1 is a dominant epigenetic modifier of a tissue specifically silent allele of pericarp color1, Genetics, 2003, vol. 163, no. 3, pp. 1135—1146.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Wittmeyer, K., Cui, J., Chatterjee, D., et al., The dominant and poorly penetrant phenotypes of maize Unstable factor for orange1 are caused by DNA methylation changes at a linked transposon, Plant Cell, 2018, vol. 30, no. 12, pp. 3006—3023. https://doi.org/10.1105/tpc.18.00546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Boddu, J., Jiang, C., Sangar, V., et al., Comparative structural and functional characterization of sorghum and maize duplications containing orthologous Myb transcription regulators of 3-deoxyflavonoid biosynthesis, Plant Mol. Biol., 2006, vol. 60, pp. 185—199. https://doi.org/10.1007/s11103-005-3568-1

    Article  CAS  PubMed  Google Scholar 

  166. Glagoleva, A.Y., Shoeva, O.Y., and Khlestkina, E.K., Structural and functional divergence of homoeologous genes in allopolyploid plant genomes, Vavilovskii Zh. Genet. Sel., 2016, vol. 20, no. 6, pp. 823—831. https://doi.org/10.18699/VJ16.204

    Article  Google Scholar 

  167. Shoeva, O.Y., Glagoleva, A.Y., and Khlestkina, E.K., The factors affecting the evolution of the anthocyanin biosynthesis pathway genes in monocot and dicot plant species, BMC Plant Biol., 2017, vol. 17, suppl. 2, p. 256. https://doi.org/10.1186/s12870-017-1190-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ji, Q., Xu, X., and Wang, K., Genetic transformation of major cereal crops, Int. J. Dev. Biol., 2013, vol. 57, pp. 495—508. https://doi.org/10.1387/ijdb.130244kw

    Article  CAS  PubMed  Google Scholar 

  169. Bennett, M.D., Bhandol, P., and Leitch, I.J., Nuclear DNA amounts in angiosperms and their modern uses—807 new estimates, Ann. Bot., 2000, vol. 86, no. 4, pp. 859—909. https://doi.org/10.1006/anbo.2000.1253

    Article  CAS  Google Scholar 

  170. Arumuganathan, K. and Earle, E.D., Nuclear DNA content of some important plant species, Plant Mol. Biol. Rep., 1991, vol. 9, pp. 208—218. https://doi.org/10.1007/BF02672069

    Article  CAS  Google Scholar 

Download references

Funding

The article was prepared within the framework of the state assignment of the Vavilov All-Russian Institute of Plant Genetic Resources according to the thematic research plan on topic no. 0481-2019-0001 “Genomic and Postgenomic Technologies for Identification of New Genetic Markers of Selectively Significant Properties and New Allelic Variants of Economically Valuable Genes in the Gene Pool of Cultivated Plants and Their Wild Relatives.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Strygina.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by V. Mittova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strygina, K.V. Synthesis of Flavonoid Pigments in Grain of Representatives of Poaceae: General Patterns and Exceptions in N.I. Vavilov’s Homologous Series. Russ J Genet 56, 1345–1358 (2020). https://doi.org/10.1134/S1022795420110095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795420110095

Keywords:

Navigation